Learn R Programming

xps (version 1.32.0)

PreFilter-class: Class PreFilter

Description

Class PreFilter allows to apply different filters to class ExprTreeSet, i.e. to the expression level data.frame data.

Arguments

Objects from the Class

Objects can be created by calls of the form new("PreFilter", ...). Alternatively, the contructor PreFilter can be used.

Slots

mad:
Object of class "list" describing parameters for madFilter.
cv:
Object of class "list" describing parameters for cvFilter.
variance:
Object of class "list" describing parameters for varFilter.
difference:
Object of class "list" describing parameters for diffFilter.
ratio:
Object of class "list" describing parameters for ratioFilter.
gap:
Object of class "list" describing parameters for gapFilter.
hithreshold:
Object of class "list" describing parameters for highFilter.
lothreshold:
Object of class "list" describing parameters for lowFilter.
quantile:
Object of class "list" describing parameters for quantileFilter.
prescall:
Object of class "list" describing parameters for callFilter.
numfilters:
Object of class "numeric" giving the number of filters applied.

Extends

Class "Filter", directly.

Methods

callFilter
signature(object = "PreFilter"): extracts slot prescall.
callFilter<-
signature(object = "PreFilter", value = "character"): replaces slot prescall with character vector c(cutoff, samples, condition).
cvFilter
signature(object = "PreFilter"): extracts slot cv.
cvFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot cv with numeric vector c(cutoff, trim, epsilon).
diffFilter
signature(object = "PreFilter"): extracts slot difference.
diffFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot difference with numeric vector c(cutoff, trim, epsilon).
gapFilter
signature(object = "PreFilter"): extracts slot gap.
gapFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot gap with numeric vector c(cutoff, window, trim, epsilon).
highFilter
signature(object = "PreFilter"): extracts slot hithreshold.
highFilter<-
signature(object = "PreFilter", value = "character"): replaces slot hithreshold with character vector c(cutoff, parameter, condition).
lowFilter
signature(object = "PreFilter"): extracts slot lothreshold.
lowFilter<-
signature(object = "PreFilter", value = "character"): replaces slot lothreshold with character vector c(cutoff, parameter, condition).
madFilter
signature(object = "PreFilter"): extracts slot mad.
madFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot mad with numeric vector c(cutoff, epsilon).
quantileFilter
signature(object = "PreFilter"): extracts slot quantile.
quantileFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot quantile with numeric vector c(cutoff, loquantile, hiquantile).
ratioFilter
signature(object = "PreFilter"): extracts slot ratio.
ratioFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot ratio with numeric vector c(cutoff).
varFilter
signature(object = "PreFilter"): extracts slot variance.
varFilter<-
signature(object = "PreFilter", value = "numeric"): replaces slot variance with numeric vector c(cutoff, trim, epsilon).

See Also

related classes Filter, UniFilter.

Examples

Run this code
## for demonstration purposes only:  initialize all pre-filters
prefltr <- new("PreFilter")
madFilter(prefltr) <- c(0.5,0.01)
cvFilter(prefltr) <- c(0.3,0.0,0.01)
varFilter(prefltr) <- c(0.6,0.02,0.01)
diffFilter(prefltr) <- c(2.2,0.0,0.01)
ratioFilter(prefltr) <- c(1.5)
gapFilter(prefltr) <- c(0.3,0.05,0.0,0.01)
lowFilter(prefltr) <- c(4.0,3,"samples")
highFilter(prefltr) <- c(14.5,75.0,"percent")
quantileFilter(prefltr) <- c(3.0, 0.05, 0.95)
callFilter(prefltr) <- c(0.02,80.0,"percent")
str(prefltr)

Run the code above in your browser using DataLab