Learn R Programming

xps (version 1.32.0)

dfw: Distribution Free Weighted Expression Measure

Description

This function converts a DataTreeSet into an ExprTreeSet using the Distribution Free Weighted Fold Change (DFW) method.

Usage

dfw(xps.data, filename  = character(0), filedir  = getwd(), tmpdir  = "", normalize  = TRUE, m  = 3, n  = 1, c  = 0.01, option  = "transcript", exonlevel  = "", xps.scheme = NULL, add.data  = TRUE, verbose  = TRUE)

Arguments

xps.data
object of class DataTreeSet.
filename
file name of ROOT data file.
filedir
system directory where ROOT data file should be stored.
tmpdir
optional temporary directory where temporary ROOT files should be stored.
normalize
logical. If TRUE normalize data using quantile normalization.
m
positive number as exponent of the weighted range WR.
n
positive number as exponent of the weighted standard deviation WSD.
c
scaling parameter.
option
option determining the grouping of probes for summarization, one of ‘transcript’, ‘exon’, ‘probeset’; exon arrays only.
exonlevel
exon annotation level determining which probes should be used for summarization; exon/genome arrays only.
xps.scheme
optional alternative SchemeTreeSet.
add.data
logical. If TRUE expression data will be included as slot data.
verbose
logical, if TRUE print status information.

Value

An ExprTreeSet

Details

This function computes the DFW (Distribution Free Weighted Fold Change) expression measure described in Chen et al. for both expression arrays and exon arrays. For exon arrays it is necessary to supply the requested option and exonlevel.

Following options are valid for exon arrays:

transcript:
expression levels are computed for transcript clusters, i.e. probe sets containing the same 'transcript_cluster_id'.
exon:
expression levels are computed for exon clusters, i.e. probe sets containing the same 'exon_id', where each exon cluster consists of one or more probesets.
probeset:
expression levels are computed for individual probe sets, i.e. for each 'probeset_id'.
Following exonlevel annotations are valid for exon arrays:
core:
probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.
extended:
probesets with other cDNA support.
metaextended: extended meta-probesets.
full:
probesets supported by gene predictions only.
metafull: full meta-probesets.
affx:
standard AFFX controls.
Following exonlevel annotations are valid for whole genome arrays:
core:
probesets with category 'unique', 'similar' and 'mixed'.
metacore: probesets with category 'unique' only.
affx:
standard AFFX controls.
Exon levels can also be combined, with following combinations being most useful:
exonlevel="metacore+affy":
core meta-probesets plus AFFX controls
exonlevel="core+extended":
probesets with cDNA support
exonlevel="core+extended+full":
supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf: “Exon Probeset Annotations and Transcript Cluster Groupings”.

In order to use an alternative SchemeTreeSet set the corresponding SchemeSet xps.scheme.

References

Chen, Z., McGee M., Liu Q., and Scheuermann, R.H. (2007), A distribution free summarization method for Affymetrix GeneChip arrays. Bioinformatics 23(3):321-327

See Also

express

Examples

Run this code
## first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
data.test3 <- root.data(scheme.test3, paste(path.package("xps"),"rootdata/DataTest3_cel.root",sep="/"))

data.dfw <- dfw(data.test3,"tmp_Test3DFW",verbose=FALSE)

## get data.frame
expr.dfw <- validData(data.dfw)
head(expr.dfw)

Run the code above in your browser using DataLab