Learn R Programming

xps (version 1.32.0)

express: Compute expression levels from raw data

Description

This function allows to combine different algorithms to compute expression levels, or to return the result for different algorithms only.

Usage

express(xps.data, filename = character(), filedir = getwd(), tmpdir = "", update = FALSE, # background correction bgcorrect.method = NULL, bgcorrect.select = character(), bgcorrect.option = character(), bgcorrect.params = list(), # normalization normalize.method = NULL, normalize.select = character(), normalize.option = character(), normalize.logbase = character(), normalize.params = list(), # expression values summarize.method = NULL, summarize.select = character(), summarize.option = character(), summarize.logbase = character(), summarize.params = list(), # reference values reference.index  = 0, reference.method = "mean", reference.params = list(0), # misc. exonlevel  = "", xps.scheme = NULL, add.data  = TRUE, bufsize  = 32000, verbose  = TRUE)
xpsPreprocess(object, ...)

Arguments

xps.data
object of class DataTreeSet.
filename
file name of ROOT data file.
filedir
system directory where ROOT data file should be stored.
tmpdir
optional temporary directory where temporary ROOT files should be stored.
update
logical. If TRUE the existing ROOT data file filename will be updated.
bgcorrect.method
background method to use.
bgcorrect.select
type of probes to select for background correction.
bgcorrect.option
type of background correction to use.
bgcorrect.params
vector of parameters for background method.
normalize.method
normalization method to use.
normalize.select
type of probes to select for normalization.
normalize.option
normalization option.
normalize.logbase
logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘log10’.
normalize.params
vector of parameters for normalization method.
summarize.method
summarization method to use.
summarize.select
type of probes to select for summarization.
summarize.option
option determining the grouping of probes for summarization, one of ‘transcript’, ‘exon’, ‘probeset’; exon arrays only.
summarize.logbase
logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘log10’.
summarize.params
vector of parameters for summarization method.
reference.index
index of reference tree to use, or 0.
reference.method
for refindex=0, either trimmed mean or median of trees.
reference.params
vector of parameters for reference method.
exonlevel
exon annotation level determining which probes should be used for summarization; exon/genome arrays only.
xps.scheme
optional alternative SchemeSet.
add.data
logical. If TRUE expression data will be included as slot data.
bufsize
integer which sets the buffer size of the tree branch baskets (default is 32000).
verbose
logical, if TRUE print status information.
object
object of class DataTreeSet.
...
the arguments described above.

Value

An object of type DataTreeSet or ExprTreeSet.

Details

This function allows to combine different algorithms to compute expression levels, or to return the result for different algorithms only.

Please have a look at vignette “xpsPreprocess.pdf” for details on how to use function express.

xpsPreprocess is the DataTreeSet method called by function express, containing the same parameters.

See Also

bgcorrect, normalize, summarize

Examples

Run this code
## load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
data.test3 <- root.data(scheme.test3, paste(path.package("xps"),"rootdata/DataTest3_cel.root",sep="/"))

## compute rma with a single call to express()
expr.rma <- express(data.test3,"tmp_Test3Exprs",filedir=getwd(),tmpdir="",update=FALSE,
            bgcorrect.method="rma",bgcorrect.select="none",bgcorrect.option="pmonly:epanechnikov",bgcorrect.params=c(16384),
            normalize.method="quantile",normalize.select="pmonly",normalize.option="transcript:together:none",normalize.logbase="0",normalize.params=c(0.0),
            summarize.method="medianpolish",summarize.select="pmonly",summarize.option="transcript",summarize.logbase="log2",summarize.params=c(10, 0.01, 1.0),
            verbose=FALSE)

## get expression data.frame
expr <- exprs(expr.rma)
head(expr)

## plot expression levels
if (interactive()) {
boxplot(expr.rma)
boxplot(log2(expr[,3:6]))
}

## Not run: 
# ## examples using Affymetrix human tissue dataset (see also xps/examples/script4exon.R)
# 
# ## example - exon array, e.g. HuEx-1_0-st-v2:
# scmdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Schemes"
# datdir <- "/Volumes/GigaDrive/CRAN/Workspaces/ROOTData"
# scheme.exon <- root.scheme(paste(scmdir,"Scheme_HuEx10stv2r2_na25.root",sep="/"))
# data.exon   <- root.data(scheme.exon, paste(datdir,"HuTissuesExon_cel.root",sep="/"))
# 
# workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/exon"
# expr.rma <- express(data.exon,"HuExonExprs",filedir=workdir,tmpdir="",update=F,
#             bgcorrect.method="rma",bgcorrect.select="antigenomic",bgcorrect.option="pmonly:epanechnikov",bgcorrect.params=c(16384),
#             normalize.method="quantile",normalize.select="pmonly",normalize.option="transcript:together:none",normalize.logbase="0",normalize.params=c(0.0),
#             summarize.method="medianpolish",summarize.select="pmonly",summarize.option="transcript",summarize.logbase="log2",summarize.params=c(10, 0.01, 1.0),
#             exonlevel="metacore+affx")
# ## End(Not run)

Run the code above in your browser using DataLab