Learn R Programming

xps (version 1.32.0)

rleplot-methods: Box Plots of Relative Log Expression (RLE)

Description

Produce boxplots of Relative Log Expression (RLE) values for the set of arrays.

Usage

rleplot(x, which = "UnitName", size = 0, range = 0, names = "namepart", main = "RLE Plot", ylim = c(-1.0, 1.0), las = 2, add.line = TRUE, outline = FALSE, ...)

Arguments

x
object of class ExprTreeSet or QualTreeSet.
which
type of probes to be used, for details see validData.
size
length of sequence to be generated as subset.
range
determines how far the plot whiskers extend out from the box.
names
optional vector of sample names.
main
the main title for the plot.
ylim
range for the plotted y values.
las
the style of axis labels.
add.line
logical, if TRUE a horizontal line is drawn.
outline
if outline is not true, the outliers are not drawn.
...
optional arguments to be passed to boxplot.

Details

Create boxplots of Relative Log Expression (RLE) values for the set of arrays, i.e. of M plots, where M is determined relative to a pseudo-median reference chip.

For names=NULL full column names of slot data will be displayed while for names="namepart" column names will be displayed without name extension. If names is a vector of column names, only these columns will displayed as boxplot.

If an object of class QualTreeSet was created by fitting a probe level model with qualopt="all" then rleplot will plot RLE for "all" quality options. If you want to plot RLE for a certain quality option only, e.g. "normalized" data only, then you can use parameter names with names="namepart:", e.g. names="namepart:normalized".

See Also

RLE, plotRLE, mboxplot, nuseplot

Examples

Run this code
# load existing ROOT scheme file and ROOT expression file for rma
scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
data.rma <- root.expr(scheme.test3, paste(path.package("xps"),"rootdata/tmp_Test3RMA.root",sep="/"), "mdp")

if (interactive()) {
rleplot(data.rma)
}

Run the code above in your browser using DataLab