Learn R Programming

xps (version 1.32.0)

rma: Robust Multi-Array Average Expression Measure

Description

This function converts a DataTreeSet into an ExprTreeSet using the robust multi-array average (RMA) expression measure.

Usage

rma(xps.data, filename  = character(0), filedir  = getwd(), tmpdir  = "", background = "pmonly", normalize  = TRUE, option  = "transcript", exonlevel  = "", params  = list(16384, 0.0, 1.0, 10, 0.01, 1), xps.scheme = NULL, add.data  = TRUE, verbose  = TRUE)
xpsRMA(object, ...)

Arguments

xps.data
object of class DataTreeSet.
filename
file name of ROOT data file.
filedir
system directory where ROOT data file should be stored.
tmpdir
optional temporary directory where temporary ROOT files should be stored.
background
probes used to compute background, one of ‘pmonly’, ‘mmonly’, ‘both’; for genome/exon arrays one of ‘genomic’, ‘antigenomic’
normalize
logical. If TRUE normalize data using quantile normalization.
option
option determining the grouping of probes for summarization, one of ‘transcript’, ‘exon’, ‘probeset’; exon arrays only.
exonlevel
exon annotation level determining which probes should be used for summarization; exon/genome arrays only.
params
list of (default) parameters for rma.
xps.scheme
optional alternative SchemeTreeSet.
add.data
logical. If TRUE expression data will be included as slot data.
verbose
logical, if TRUE print status information.
object
object of class DataTreeSet.
...
the arguments described above.

Value

An ExprTreeSet

Details

This function computes the RMA (Robust Multichip Average) expression measure described in Irizarry et al. for both expression arrays and exon arrays. For exon arrays it is necessary to supply the requested option and exonlevel.

Following options are valid for exon arrays:

transcript:
expression levels are computed for transcript clusters, i.e. probe sets containing the same 'transcript_cluster_id'.
exon:
expression levels are computed for exon clusters, i.e. probe sets containing the same 'exon_id', where each exon cluster consists of one or more probesets.
probeset:
expression levels are computed for individual probe sets, i.e. for each 'probeset_id'.
Following exonlevel annotations are valid for exon arrays:
core:
probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.
extended:
probesets with other cDNA support.
metaextended: extended meta-probesets.
full:
probesets supported by gene predictions only.
metafull: full meta-probesets.
ambiguous:
ambiguous probesets only.
affx: standard AFFX controls.
Following exonlevel annotations are valid for whole genome arrays:
core:
probesets with category 'unique', 'similar' and 'mixed'.
metacore: probesets with category 'unique' only.
affx:
standard AFFX controls.
Exon levels can also be combined, with following combinations being most useful:
exonlevel="metacore+affx":
core meta-probesets plus AFFX controls
exonlevel="core+extended":
probesets with cDNA support
exonlevel="core+extended+full":
supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf: “Exon Probeset Annotations and Transcript Cluster Groupings”.

In order to use an alternative SchemeTreeSet set the corresponding SchemeSet xps.scheme.

xpsRMA is the DataTreeSet method called by function rma, containing the same parameters.

References

Rafael. A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Terence P. Speed (2003), Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research 31(4):e15

Bolstad, B.M., Irizarry R. A., Astrand M., and Speed, T.P. (2003), A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2):185-193

Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003) Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics .Vol. 4, Number 2: 249-264

See Also

express

Examples

Run this code
## first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
data.test3 <- root.data(scheme.test3, paste(path.package("xps"),"rootdata/DataTest3_cel.root",sep="/"))

data.rma <- rma(data.test3,"tmp_Test3RMA",tmpdir="",background="pmonly",normalize=TRUE,verbose=FALSE)

## get data.frame
expr.rma <- validData(data.rma)
head(expr.rma)

## plot results
if (interactive()) {
boxplot(data.rma)
boxplot(log2(expr.rma))
}

rm(scheme.test3, data.test3)
gc()

## Not run: 
# ## examples using Affymetrix human tissue dataset (see also xps/examples/script4exon.R)
# ## first, load ROOT scheme file and ROOT data file from e.g.:
# scmdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Schemes"
# datdir <- "/Volumes/GigaDrive/CRAN/Workspaces/ROOTData"
# 
# ## 1. example - expression array, e.g. HG-U133_Plus_2:
# scheme.u133p2 <- root.scheme(paste(scmdir,"Scheme_HGU133p2_na25.root",sep="/"))
# data.u133p2   <- root.data(scheme.u133p2, paste(datdir,"HuTissuesU133P2_cel.root",sep="/"))
# 
# workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/u133p2"
# data.rma <- rma(data.u133p2,"MixU133P2RMA",filedir=workdir,tmpdir="",
#                 background="pmonly",normalize=TRUE)
# 
# ## 2. example - whole genome array, e.g. HuGene-1_0-st-v1:
# scheme.genome <- root.scheme(paste(scmdir,"Scheme_HuGene10stv1r3_na25.root",sep="/"))
# data.genome   <- root.data(scheme.genome, paste(datdir,"HuTissuesGenome_cel.root",sep="/"))
# 
# workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/hugene"
# data.g.rma <- rma(data.genome,"HuGeneMixRMAMetacore",filedir=workdir,tmpdir="",
#                   background="antigenomic",normalize=T,exonlevel="metacore+affx")
# 
# ## 3. example - exon array, e.g. HuEx-1_0-st-v2:
# scheme.exon <- root.scheme(paste(scmdir,"Scheme_HuEx10stv2r2_na25.root",sep="/"))
# data.exon   <- root.data(scheme.exon, paste(datdir,"HuTissuesExon_cel.root",sep="/"))
# 
# workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/exon"
# data.x.rma <- rma(data.exon,"MixRMAMetacore",filedir=workdir,tmpdir="",background="antigenomic",
#                   normalize=T,option="transcript",exonlevel="metacore")
# ## End(Not run)

Run the code above in your browser using DataLab