t.test
on each row of the
expression dataframe.
The Unitest returns a dataframe containing the results of the test.Usage
uniTest(object)
uniTest(object, value)<-
UniFilter
.c(type, alternative, correction, numperm, mu, paired, conflevel, varequ)
UniFilter
object.
uniTest
initializes the following parameters:
type : |
|
a character string specifying the type of test: currently "t.test" (default) or "normal.test" . |
|
alternative : |
a character string specifying the alternative hypothesis,
must be one of "two.sided" (default), "greater" or "less" . |
correction : |
|
a correction to adjust p-values for multiple comparisons: | |
correction="none" : no correction (default). |
|
correction="bonferroni" : Bonferroni correction. |
|
correction="BH" or "fdr" : correction for false discovery rate (Benjamini & Hochberg). |
|
correction="BY" : correction for false discovery rate (Benjamini & Yekutieli). |
|
correction="hochberg" : Hochberg correction. |
|
correction="holm" : Holm correction. |
|
correction="wy" : Westfall-Young step-down adjusted p-chance (E.Manduchi). |
|
numperm : |
|
optional number of permutations used to determine p-chance (default is 0). | |
mu : |
a number indicating the true value of the difference in means for a two sample test (default is 0). |
paired : |
|
a logical indicating whether you want a paired uni-test (default is FALSE). | |
conflevel : |
confidence level of the interval (default is 0.95). |
Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 1165--1188.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65--70.
Westfall P.H. and Young S.S. (1993) Resampling-based multiple testing:examples and methods for p-value adjustment. Wiley series in probability and mathematical statistics; Wiley.
Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2000) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Technical report 578; UC Berkeley.
Manduchi E. (2000) Software: tpWY, see: http://www.cbil.upenn.edu/tpWY/
unifltr <- UniFilter()
uniTest(unifltr) <- c("t.test","two.sided","none",0,0.0,FALSE,0.98,TRUE)
str(unifltr)
Run the code above in your browser using DataLab