require (yaImpute)
data(iris)
# set the random number seed so that example results are consistent
# normally, leave out this command
set.seed(12345)
# form some test data, y's are defined only for reference
# observations.
refs=sample(rownames(iris),50)
x <- iris[,1:2]      # Sepal.Length Sepal.Width
y <- iris[refs,3:4]  # Petal.Length Petal.Width
# build yai objects using 2 methods
msn <- yai(x=x,y=y)
mal <- yai(x=x,y=y,method="mahalanobis")
# compare these results using the generalized mean distances. mal wins!
grmsd(mal,msn)
# use projection pursuit and specify ppControl (loads package ccaPP)
if (require(ccaPP)) 
{
  msnPP <- yai(x=x,y=y,method="msnPP",ppControl=c(method="kendall",search="proj"))
  grmsd(mal,msnPP,msn)
}
#############
data(MoscowMtStJoe)
# convert polar slope and aspect measurements to cartesian
# (which is the same as Stage's (1976) transformation).
polar <- MoscowMtStJoe[,40:41]
polar[,1] <- polar[,1]*.01      # slope proportion
polar[,2] <- polar[,2]*(pi/180) # aspect radians
cartesian <- t(apply(polar,1,function (x)
               {return (c(x[1]*cos(x[2]),x[1]*sin(x[2]))) }))
colnames(cartesian) <- c("xSlAsp","ySlAsp")
x <- cbind(MoscowMtStJoe[,37:39],cartesian,MoscowMtStJoe[,42:64])
y <- MoscowMtStJoe[,1:35]
msn <- yai(x=x, y=y, method="msn", k=1)
mal <- yai(x=x, y=y, method="mahalanobis", k=1)
# the results can be plotted.
plot(mal,vars=yvars(mal)[1:16])
# compare these results using the generalized mean distances..
grmsd(mal,msn)
# try method="gower"
if (require(gower))
{
  gow <- yai(x=x, y=y, method="gower", k=1)
  # compare these results using the generalized mean distances..
  grmsd(mal,msn,gow)
}
# try method="randomForest"
if (require(randomForest))
{
  # reduce the plant community data for randomForest.
  yba  <- MoscowMtStJoe[,1:17]
  ybaB <- whatsMax(yba,nbig=7)  # see help on whatsMax
  
  rf <- yai(x=x, y=ybaB, method="randomForest", k=1)
  
  # build the imputations for the original y's
  rforig <- impute(rf,ancillaryData=y)
  
  # compare the results using individual rmsd's
  compare.yai(mal,msn,rforig)
  plot(compare.yai(mal,msn,rforig))
  
  # build another randomForest case forcing regression
  # to be used for continuous variables. The answers differ
  # but one is not clearly better than the other.
  
  rf2 <- yai(x=x, y=ybaB, method="randomForest", rfMode="regression")
  rforig2 <- impute(rf2,ancillaryData=y)
  compare.yai(rforig2,rforig)
}
  
Run the code above in your browser using DataLab