Rdocumentation
powered by
Learn R Programming
yager (version 0.1.1)
Yet Another General Regression Neural Network
Description
Another implementation of general regression neural network in R based on Specht (1991)
. It is applicable to the functional approximation or the classification.
Copy Link
Link to current version
Version
Version
0.1.1
0.1.0
Install
install.packages('yager')
Monthly Downloads
95
Version
0.1.1
License
GPL (>= 2)
Issues
0
Pull Requests
0
Stars
11
Forks
4
Repository
https://github.com/statcompute/yager
Maintainer
WenSui Liu
Last Published
October 25th, 2020
Functions in yager (0.1.1)
Search all functions
grnn.imp
Derive the importance rank of all predictors used in the GRNN
grnn.search_rsq
Search for the optimal value of GRNN smoothing parameter based on r-square
grnn.x_imp
Derive the importance of a predictor used in the GRNN
grnn.x_pfi
Derive the permutation feature importance of a predictor used in the GRNN
grnn.parpred
Calculate predicted values of GRNN by using parallelism
grnn.partial
Derive the partial effect of a predictor used in a GRNN
gen_unifm
Generate Uniform random numbers
grnn.margin
Derive the marginal effect of a predictor used in a GRNN
grnn.pfi
Derive the PFI rank of all predictors used in the GRNN
gen_latin
Generate random numbers of latin hypercube sampling
grnn.predict
Calculate predicted values of GRNN
grnn.optmiz_auc
Optimize the optimal value of GRNN smoothing parameter based on AUC
folds
Generate a list of index for the n-fold cross-validation
grnn.predone
Calculate a predicted value of GRNN
grnn.search_auc
Search for the optimal value of GRNN smoothing parameter based on AUC
gen_sobol
Generate sobol sequence
grnn.fit
Create a general regression neural network