## Not run:
# #Ex.1: Carma(p=3, q=0) process driven by a brownian motion.
#
# mod0<-setCarma(p=3,q=0)
#
# # We fix the autoregressive and moving average parameters
# # to ensure the existence of a second order stationary solution for the process.
#
# true.parm0 <-list(a1=4,a2=4.75,a3=1.5,b0=1)
#
# # We simulate a trajectory of the Carma model.
#
# numb.sim<-1000
# samp0<-setSampling(Terminal=100,n=numb.sim)
# set.seed(100)
# incr.W<-matrix(rnorm(n=numb.sim,mean=0,sd=sqrt(100/numb.sim)),1,numb.sim)
#
# sim0<-simulate(mod0,
# true.parameter=true.parm0,
# sampling=samp0, increment.W=incr.W)
#
# #Applying the CarmaNoise
#
# system.time(
# inc.Levy0<-CarmaNoise(sim0,true.parm0)
# )
#
# # We compare the orginal with the estimated noise increments
#
# par(mfrow=c(1,2))
# plot(t(incr.W)[1:998],type="l", ylab="",xlab="time")
# title(main="True Brownian Motion",font.main="1")
# plot(inc.Levy0,type="l", main="Filtered Brownian Motion",font.main="1",ylab="",xlab="time")
#
# # Ex.2: carma(2,1) driven by a compound poisson
# # where jump size is normally distributed and
# # the lambda is equal to 1.
#
# mod1<-setCarma(p=2,
# q=1,
# measure=list(intensity="Lamb",df=list("dnorm(z, 0, 1)")),
# measure.type="CP")
#
# true.parm1 <-list(a1=1.39631, a2=0.05029,
# b0=1,b1=2,
# Lamb=1)
#
# # We generate a sample path.
#
# samp1<-setSampling(Terminal=100,n=200)
# set.seed(123)
# sim1<-simulate(mod1,
# true.parameter=true.parm1,
# sampling=samp1)
#
# # We estimate the parameter using qmle.
# carmaopt1 <- qmle(sim1, start=true.parm1)
# summary(carmaopt1)
# # Internally qmle uses CarmaNoise. The result is in
# plot(carmaopt1)
#
# # Ex.3: Carma(p=2,q=1) with scale and location parameters
# # driven by a Compound Poisson
# # with jump size normally distributed.
# mod2<-setCarma(p=2,
# q=1,
# loc.par="mu",
# scale.par="sig",
# measure=list(intensity="Lamb",df=list("dnorm(z, 0, 1)")),
# measure.type="CP")
#
# true.parm2 <-list(a1=1.39631,
# a2=0.05029,
# b0=1,
# b1=2,
# Lamb=1,
# mu=0.5,
# sig=0.23)
# # We simulate the sample path
# set.seed(123)
# sim2<-simulate(mod2,
# true.parameter=true.parm2,
# sampling=samp1)
#
# # We estimate the Carma and we plot the underlying noise.
#
# carmaopt2 <- qmle(sim2, start=true.parm2)
# summary(carmaopt2)
#
# # Increments estimated by CarmaNoise
# plot(carmaopt2)
# ## End(Not run)
Run the code above in your browser using DataLab