## Not run:
# # Definition Model
#
# Mod1<-setModel(drift=c("a1"), diffusion = matrix(c("s1"),1,1),
# solve.variable = c("X"), time.variable = "s")
#
# # In this example we define an integral of SDE such as
# # \[
# # I=\int^{t}_{0} b*exp(-a*(t-s))*(X_s-a1*s)dX_s
# # \]
#
# integ <- matrix("b*exp(-a*(t-s))*(X-a1*s)",1,1)
#
# Integral <- setIntegral(yuima = Mod1,integrand = integ,
# var.dx = "X", lower.var = "0", upper.var = "t",
# out.var = "", nrow =1 ,ncol=1)
#
# # Structure of slots
#
# is(Integral)
# # Function h in the above definition
# Integral@Integral@Integrand@IntegrandList
# # Dimension of Intgrand
# Integral@Integral@Integrand@dimIntegrand
#
# # all parameters are $\left(b,a,a1,s1\right)$
# Integral@Integral@param.Integral@allparam
#
# # the parameters in the integrand are $\left(b,a,a1\right)$ \newline
# Integral@Integral@param.Integral@Integrandparam
#
# # common parameters are $a1$
# Integral@Integral@param.Integral@common
#
# # integral variable dX_s
# Integral@Integral@variable.Integral@var.dx
# Integral@Integral@variable.Integral@var.time
#
# # lower and upper vars
# Integral@Integral@variable.Integral@lower.var
# Integral@Integral@variable.Integral@upper.var
#
# ## End(Not run)
Run the code above in your browser using DataLab