50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


yuima (version 1.15.22)

fitCIR: Calculate preliminary estimator and one-step improvements of a Cox-Ingersoll-Ross diffusion

Description

This is a function to simulate the preliminary estimator and the corresponding one step estimators based on the Newton-Raphson and the scoring method of the Cox-Ingersoll-Ross process given via the SDE

dXt=(αβXt)dt+γXtdWt

with parameters β>0, 2α>5γ>0 and a Brownian motion (Wt)t0. This function uses the Gaussian quasi-likelihood, hence requires that data is sampled at high-frequency.

Usage

fitCIR(data)

Value

A list with three entries each contain a vector in the following order: The result of the preliminary estimator, Newton-Raphson method and the method of scoring.

If the sampling points are not equidistant the function will return 'Please use equidistant sampling points'.

Arguments

data

a numeric matrix containing the realization of (t0,Xt0),,(tn,Xtn) with tj denoting the j-th sampling times. data[1,] contains the sampling times t0,,tn and data[2,] the corresponding value of the process Xt0,,Xtn. In other words data[,j]=(tj,Xtj). The observations should be equidistant.

Author

Nicole Hufnagel

Contacts: nicole.hufnagel@math.tu-dortmund.de

Details

The estimators calculated by this function can be found in the reference below.

References

Y. Cheng, N. Hufnagel, H. Masuda. Estimation of ergodic square-root diffusion under high-frequency sampling. Econometrics and Statistics, Article Number: 346 (2022).

Examples

Run this code
#You can make use of the function simCIR to generate the data 
data <- simCIR(alpha=3,beta=1,gamma=1, n=5000, h=0.05, equi.dist=TRUE)
results <- fitCIR(data)

Run the code above in your browser using DataLab