Learn R Programming

zipfextR (version 1.0.2)

zi_zipfpssFit: Zero Inflated Zipf-PSS parameters estimation.

Description

For a given sample of strictly positive integer numbers, usually of the type of ranking data or frequencies of frequencies data, estimates the parameters of the zero inflated Zipf-PSS distribution by means of the maximum likelihood method. The input data should be provided as a frequency matrix.

Usage

zi_zipfpssFit(data, init_alpha = 1.5, init_lambda = 1.5,
  init_w = 0.1, level = 0.95, ...)

# S3 method for zi_zipfpssR residuals(object, ...)

# S3 method for zi_zipfpssR fitted(object, ...)

# S3 method for zi_zipfpssR coef(object, ...)

# S3 method for zi_zipfpssR plot(x, ...)

# S3 method for zi_zipfpssR print(x, ...)

# S3 method for zi_zipfpssR summary(object, ...)

# S3 method for zi_zipfpssR logLik(object, ...)

# S3 method for zi_zipfpssR AIC(object, ...)

# S3 method for zi_zipfpssR BIC(object, ...)

Arguments

data

Matrix of count data in form of table of frequencies.

init_alpha

Initial value of \(\alpha\) parameter (\(\alpha > 1\)).

init_lambda

Initial value of \(\lambda\) parameter (\(\lambda > 0\)).

init_w

Initial value of \(w\) parameter (\(0 < w < 1\)).

level

Confidence level used to calculate the confidence intervals (default 0.95).

...

Further arguments to the generic functions. The extra arguments are passing to the optim function.

object

An object from class "zpssR" (output of zipfpssFit function).

x

An object from class "zpssR" (output of zipfpssFit function).

Details

The argument data is a two column matrix with the first column containing the observations and the second column containing their frequencies.

References

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 22-26.

Sundt, B., & Jewell, W. S. (1981). Further results on recursive evaluation of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 27-39.

See Also

getInitialValues.

Examples

Run this code
# NOT RUN {
data <- rzipfpss(100, 2.5, 1.3)
data <- as.data.frame(table(data))
data[,1] <- as.numeric(as.character(data[,1]))
data[,2] <- as.numeric(as.character(data[,2]))
obj <- zipfpssFit(data, init_alpha = 1.5, init_lambda = 1.5)
# }

Run the code above in your browser using DataLab