Learn R Programming

zipfextR (version 1.0.2)

zipfpss: The Zipf-Poisson Stop Sum Distribution (Zipf-PSS).

Description

Probability mass function, cumulative distribution function, quantile function and random number generation for the Zipf-PSS distribution with parameters \(\alpha\) and \(\lambda\). The support of the Zipf-PSS distribution are the positive integer numbers including the zero value. In order to work with its zero-truncated version the parameter isTruncated should be equal to True.

Usage

dzipfpss(x, alpha, lambda, log = FALSE, isTruncated = FALSE)

pzipfpss(q, alpha, lambda, log.p = FALSE, lower.tail = TRUE, isTruncated = FALSE)

rzipfpss(n, alpha, lambda, log.p = FALSE, lower.tail = TRUE, isTruncated = FALSE)

qzipfpss(p, alpha, lambda, log.p = FALSE, lower.tail = TRUE, isTruncated = FALSE)

Arguments

x, q

Vector of positive integer values.

alpha

Value of the \(\alpha\) parameter (\(\alpha > 1\) ).

lambda

Value of the \(\lambda\) parameter (\(\lambda > 0\) ).

log, log.p

Logical; if TRUE, probabilities p are given as log(p).

isTruncated

Logical; if TRUE, the zero truncated version of the distribution is returned.

lower.tail

Logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X > x]\).

n

Number of random values to return.

p

Vector of probabilities.

Details

The support of the \(\lambda\) parameter increases when the distribution is truncated at zero being \(\lambda \geq 0\). It has been proved that when \(\lambda = 0\) one has the degenerated version of the distribution at one.

References

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 22-26.

Sundt, B., & Jewell, W. S. (1981). Further results on recursive evaluation of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 27-39.