# NOT RUN {
#3 zero-inflated poissons
prior_init <- c(0.3,0.3,0.4)
dt_init <- c(10,8,6)
emit_init <- c(10,50,100)
zeroprop <- c(0.5,0.3,0.2)
trunc <- c(10,10,10)
omega <- matrix(c(0,0.3,0.7,0.4,0,0.6,0.5,0.5,0),3,3,byrow=TRUE)
result <- hsmmsim(n=1000,M=3,prior=prior_init,dt_dist="shiftpoisson",
dt_parm=dt_init, tpm_parm=omega,emit_parm=emit_init,zeroprop=zeroprop)
y <- result$series
state <- result$state
fit <- hsmmfit(y=y,ntimes=NULL,M=3,trunc=trunc,prior_init=prior_init,dt_dist="shiftpoisson",
dt_init=dt_init,tpm_init=omega,emit_init=emit_init,zero_init=zeroprop,
method="Nelder-Mead",hessian=FALSE,control=list(maxit=500,trace=1))
decode <- hsmmviterbi(y=y,ntimes=NULL,M=3,trunc=trunc,prior=fit$prior,dt_dist="shiftpoisson",
dt_parm=fit$dt_parm,tpm_parm=fit$tpm,emit_parm=fit$emit_parm,
zero_init=fit$zeroprop,plot=TRUE,xlim=c(0,1000),ylim=c(0,200))
#check the missclassification rate
sum(decode!=state)/length(state)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab