##### eg3: modelling with clustered beta variables with inflation at 0
data("AlcoholUse", package = "zoib")
AlcoholUse$Grade <- as.factor(AlcoholUse$Grade)
post.obj <- zoib(Percentage ~ Grade+Days+Gender+Grade:Days+
Grade:Gender+Days:Gender|1|Grade+Days+Gender+Grade:Days+
Grade:Gender+Days:Gender|1, data = AlcoholUse, random = 1,
EUID= AlcoholUse$County, zero.inflation = TRUE, one.inflation = FALSE,
joint = FALSE, n.iter=5000, n.thin=20, n.burn=1000)
coeff <- post.obj$coeff
traceplot(coeff)
autocorr.plot(coeff)
check.psrf(coeff)
summ <- summary(coeff))
post.mean= apply(rbind(post.obj$ypred[[1]],post.obj$ypred[[2]]), 2, mean);
plot(AlcoholUse$Percentage,post.mean); abline(0,1,col='red')Run the code above in your browser using DataLab