Search Results:

Showing results 1 to 10 of 98.


Function zero [freealg v1.0-0]
keywords
symbolmath
title
The zero algebraic object
description
Test for a freealg object's being zero
Function Ops.onion [onion v1.2-7]
keywords
symbolmath
title
Arithmetic Ops Group Methods for Octonions
description
Allows arithmetic operators to be used for octonion calculations, such as addition, multiplication, division, integer powers, etc.
Function bases [qkerntool v1.19]
keywords
symbolmath
title
qKernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel \(k(x,y) = \frac{1}{2(1-q)}(q^{-\alpha||x||^2}+q^{-\alpha||y||^2}-2q^{-\alpha x'y}) \). The Gaussian kernel \(k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||^2/\sigma)})\). The Laplacian Kernel \(k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||/\sigma)})\). The Rational Quadratic Kernel \(k(x,y) =\frac{1}{1-q} (1-q^{\frac{||x-y||^2}{||x-y||^2+c}})\). The Multiquadric Kernel \(k(x,y) =\frac{1}{1-q} (q^c-q^{\sqrt{||x-y||^2+c}})\). The Inverse Multiquadric Kernel \(k(x,y) =\frac{1}{1-q} (q^{-\frac{1}{c}}-q^{-\frac{1}{\sqrt{||x-y||^2+c}}})\). The Wave Kernel \(k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{\theta}{||x-y||}\sin{\frac{||x-y||}{\theta}}})\). The d Kernel \(k(x,y) = \frac{1}{1-q}[1-q^(||x-y||^d)] \). The Log Kernel \(k(x,y) =\frac{1}{1-q} [1-q^ln(||x-y||^d+1)]\). The Cauchy Kernel \(k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^2/\sigma}})\). The Chi-Square Kernel \(k(x,y) =\frac{1}{1-q} (1-q^{\sum{2(x-y)^2/(x+y)} \gamma})\). The Generalized T-Student Kernel \(k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^d}})\).
Function cnds [qkerntool v1.19]
keywords
symbolmath
title
CND Kernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel \(k(x,y) = [exp(\alpha ||x||^2)+exp(\alpha||y||^2)-2exp(\alpha x'y)]/2\). The Polynomial kernel \(k(x,y) = [(\alpha ||x||^2+c)^d+(\alpha ||y||^2+c)^d-2(\alpha x'y+c)^d]/2\). The Gaussian kernel \(k(x,y) = 1-exp(-||x-y||^2/\gamma)\). The Laplacian Kernel \(k(x,y) = 1-exp(-||x-y||/\gamma)\). The ANOVA Kernel \(k(x,y) = n-\sum exp(-\sigma (x-y)^2)^d\). The Rational Quadratic Kernel \(k(x,y) = ||x-y||^2/(||x-y||^2+c)\). The Multiquadric Kernel \(k(x,y) = \sqrt{(||x-y||^2+c^2)-c}\). The Inverse Multiquadric Kernel \(k(x,y) = 1/c-1/\sqrt{||x-y||^2+c^2}\). The Wave Kernel \(k(x,y) = 1-\frac{\theta}{||x-y||}\sin\frac{||x-y||}{\theta}\). The d Kernel \(k(x,y) = ||x-y||^d\). The Log Kernel \(k(x,y) = \log(||x-y||^d+1)\). The Cauchy Kernel \(k(x,y) = 1-1/(1+||x-y||^2/\gamma)\). The Chi-Square Kernel \(k(x,y) = \sum{2(x-y)^2/(x+y)}\). The Generalized T-Student Kernel \(k(x,y) = 1-1/(1+||x-y||^d)\). The normal Kernel \(k(x,y) = ||x-y||^2\).
Function Dexpressions [MCMCglmm v2.29]
keywords
symbolmath
title
List of unevaluated expressions for (mixed) partial derivatives of fitness with respect to linear predictors.
description
Unevaluated expressions for (mixed) partial derivatives of fitness with respect to linear predictors for survival and fecundity.
Function yacmode [Ryacas0 v0.4.2]
keywords
symbolmath
title
yacmode interface
description
Interactive interface to the yacas
Function stripvar [Ryacas0 v0.4.2]
keywords
symbolmath
title
Removes part of expression containing variable
description
Yacas' Solve(eq, x) can return e.g. x == expr and {x == expr1, x == expr2, ...}. Some usages are easier if the initial x == part is removed. This is the purpose of this function.
Function yacasTranslations [Ryacas0 v0.4.2]
keywords
symbolmath
title
Yacas translations
description
Translations from R to the yacas computer algebra system.
Function yacas [Ryacas0 v0.4.2]
keywords
symbolmath
title
yacas interface
description
Interface to the yacas computer algebra system.
Function bodyAsExpression [Ryacas0 v0.4.2]
keywords
symbolmath
title
Get body of function as an expression.
description
Get body of function as an expression.