### Search Results:

Showing results 1 to 10 of 112.

##### Function zero[freealg v1.0-0]
keywords
symbolmath
title
The zero algebraic object
description
Test for a freealg object's being zero
##### Function Ops.onion[onion v1.2-7]
keywords
symbolmath
title
Arithmetic Ops Group Methods for Octonions
description
Allows arithmetic operators to be used for octonion calculations, such as addition, multiplication, division, integer powers, etc.
##### Function bases[qkerntool v1.19]
keywords
symbolmath
title
qKernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel $$k(x,y) = \frac{1}{2(1-q)}(q^{-\alpha||x||^2}+q^{-\alpha||y||^2}-2q^{-\alpha x'y})$$. The Gaussian kernel $$k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||^2/\sigma)})$$. The Laplacian Kernel $$k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||/\sigma)})$$. The Rational Quadratic Kernel $$k(x,y) =\frac{1}{1-q} (1-q^{\frac{||x-y||^2}{||x-y||^2+c}})$$. The Multiquadric Kernel $$k(x,y) =\frac{1}{1-q} (q^c-q^{\sqrt{||x-y||^2+c}})$$. The Inverse Multiquadric Kernel $$k(x,y) =\frac{1}{1-q} (q^{-\frac{1}{c}}-q^{-\frac{1}{\sqrt{||x-y||^2+c}}})$$. The Wave Kernel $$k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{\theta}{||x-y||}\sin{\frac{||x-y||}{\theta}}})$$. The d Kernel $$k(x,y) = \frac{1}{1-q}[1-q^(||x-y||^d)]$$. The Log Kernel $$k(x,y) =\frac{1}{1-q} [1-q^ln(||x-y||^d+1)]$$. The Cauchy Kernel $$k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^2/\sigma}})$$. The Chi-Square Kernel $$k(x,y) =\frac{1}{1-q} (1-q^{\sum{2(x-y)^2/(x+y)} \gamma})$$. The Generalized T-Student Kernel $$k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^d}})$$.
##### Function cnds[qkerntool v1.19]
keywords
symbolmath
title
CND Kernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel $$k(x,y) = [exp(\alpha ||x||^2)+exp(\alpha||y||^2)-2exp(\alpha x'y)]/2$$. The Polynomial kernel $$k(x,y) = [(\alpha ||x||^2+c)^d+(\alpha ||y||^2+c)^d-2(\alpha x'y+c)^d]/2$$. The Gaussian kernel $$k(x,y) = 1-exp(-||x-y||^2/\gamma)$$. The Laplacian Kernel $$k(x,y) = 1-exp(-||x-y||/\gamma)$$. The ANOVA Kernel $$k(x,y) = n-\sum exp(-\sigma (x-y)^2)^d$$. The Rational Quadratic Kernel $$k(x,y) = ||x-y||^2/(||x-y||^2+c)$$. The Multiquadric Kernel $$k(x,y) = \sqrt{(||x-y||^2+c^2)-c}$$. The Inverse Multiquadric Kernel $$k(x,y) = 1/c-1/\sqrt{||x-y||^2+c^2}$$. The Wave Kernel $$k(x,y) = 1-\frac{\theta}{||x-y||}\sin\frac{||x-y||}{\theta}$$. The d Kernel $$k(x,y) = ||x-y||^d$$. The Log Kernel $$k(x,y) = \log(||x-y||^d+1)$$. The Cauchy Kernel $$k(x,y) = 1-1/(1+||x-y||^2/\gamma)$$. The Chi-Square Kernel $$k(x,y) = \sum{2(x-y)^2/(x+y)}$$. The Generalized T-Student Kernel $$k(x,y) = 1-1/(1+||x-y||^d)$$. The normal Kernel $$k(x,y) = ||x-y||^2$$.
##### Function stringdot[kernlab v0.9-27]
keywords
symbolmath
title
String Kernel Functions
description
String kernels.
##### Function dots[kernlab v0.9-27]
keywords
symbolmath
title
Kernel Functions
description
The kernel generating functions provided in kernlab. The Gaussian RBF kernel $$k(x,x') = \exp(-\sigma \|x - x'\|^2)$$ The Polynomial kernel $$k(x,x') = (scale <x, x'> + offset)^{degree}$$ The Linear kernel $$k(x,x') = <x, x'>$$ The Hyperbolic tangent kernel $$k(x, x') = \tanh(scale <x, x'> + offset)$$ The Laplacian kernel $$k(x,x') = \exp(-\sigma \|x - x'\|)$$ The Bessel kernel $$k(x,x') = (- Bessel_{(\nu+1)}^n \sigma \|x - x'\|^2)$$ The ANOVA RBF kernel $$k(x,x') = \sum_{1\leq i_1 \ldots < i_D \leq N} \prod_{d=1}^D k(x_{id}, {x'}_{id})$$ where k(x,x) is a Gaussian RBF kernel. The Spline kernel $$\prod_{d=1}^D 1 + x_i x_j + x_i x_j min(x_i, x_j) - \frac{x_i + x_j}{2} min(x_i,x_j)^2 + \frac{min(x_i,x_j)^3}{3}$$ \ The String kernels (see stringdot.
##### Function Ops.kform[stokes v1.0-5]
keywords
symbolmath
title
Arithmetic Ops Group Methods for kform and ktensor objects
description
Allows arithmetic operators to be used for $$k$$-forms and $$k$$-tensors such as addition, multiplication, etc, where defined.
##### Function tidy[permutations v1.0-9]
keywords
symbolmath
title
Utilities to neaten permutation objects
description
Various utilities to neaten word objects by removing fixed elements
##### Function orbit[permutations v1.0-9]
keywords
symbolmath
title
Orbits of integers
description
Finds the orbit of a given integer
##### Function Ops.permutation[permutations v1.0-9]
keywords
symbolmath
title
Arithmetic Ops Group Methods for permutations
description
Allows arithmetic operators to be used for manipulation of permutation objects such as addition, multiplication, division, integer powers, etc.