### Search Results:

Showing results 1 to 10 of 111.

##### Function zero[freealg v1.0-0]
keywords
symbolmath
title
The zero algebraic object
description
Test for a freealg object's being zero
##### Function Ops.onion[onion v1.2-7]
keywords
symbolmath
title
Arithmetic Ops Group Methods for Octonions
description
Allows arithmetic operators to be used for octonion calculations, such as addition, multiplication, division, integer powers, etc.
##### Function bases[qkerntool v1.19]
keywords
symbolmath
title
qKernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel $k(x,y) = \frac{1}{2(1-q)}(q^{-\alpha||x||^2}+q^{-\alpha||y||^2}-2q^{-\alpha x'y})$. The Gaussian kernel $k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||^2/\sigma)})$. The Laplacian Kernel $k(x,y) =\frac{1}{1-q} (1-q^{(||x-y||/\sigma)})$. The Rational Quadratic Kernel $k(x,y) =\frac{1}{1-q} (1-q^{\frac{||x-y||^2}{||x-y||^2+c}})$. The Multiquadric Kernel $k(x,y) =\frac{1}{1-q} (q^c-q^{\sqrt{||x-y||^2+c}})$. The Inverse Multiquadric Kernel $k(x,y) =\frac{1}{1-q} (q^{-\frac{1}{c}}-q^{-\frac{1}{\sqrt{||x-y||^2+c}}})$. The Wave Kernel $k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{\theta}{||x-y||}\sin{\frac{||x-y||}{\theta}}})$. The d Kernel $k(x,y) = \frac{1}{1-q}[1-q^(||x-y||^d)]$. The Log Kernel $k(x,y) =\frac{1}{1-q} [1-q^ln(||x-y||^d+1)]$. The Cauchy Kernel $k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^2/\sigma}})$. The Chi-Square Kernel $k(x,y) =\frac{1}{1-q} (1-q^{\sum{2(x-y)^2/(x+y)} \gamma})$. The Generalized T-Student Kernel $k(x,y) =\frac{1}{1-q} (q^{-1}-q^{-\frac{1}{1+||x-y||^d}})$.
##### Function cnds[qkerntool v1.19]
keywords
symbolmath
title
CND Kernel Functions
description
The kernel generating functions provided in qkerntool. The Non Linear Kernel $k(x,y) = [exp(\alpha ||x||^2)+exp(\alpha||y||^2)-2exp(\alpha x'y)]/2$. The Polynomial kernel $k(x,y) = [(\alpha ||x||^2+c)^d+(\alpha ||y||^2+c)^d-2(\alpha x'y+c)^d]/2$. The Gaussian kernel $k(x,y) = 1-exp(-||x-y||^2/\gamma)$. The Laplacian Kernel $k(x,y) = 1-exp(-||x-y||/\gamma)$. The ANOVA Kernel $k(x,y) = n-\sum exp(-\sigma (x-y)^2)^d$. The Rational Quadratic Kernel $k(x,y) = ||x-y||^2/(||x-y||^2+c)$. The Multiquadric Kernel $k(x,y) = \sqrt{(||x-y||^2+c^2)-c}$. The Inverse Multiquadric Kernel $k(x,y) = 1/c-1/\sqrt{||x-y||^2+c^2}$. The Wave Kernel $k(x,y) = 1-\frac{\theta}{||x-y||}\sin\frac{||x-y||}{\theta}$. The d Kernel $k(x,y) = ||x-y||^d$. The Log Kernel $k(x,y) = \log(||x-y||^d+1)$. The Cauchy Kernel $k(x,y) = 1-1/(1+||x-y||^2/\gamma)$. The Chi-Square Kernel $k(x,y) = \sum{2(x-y)^2/(x+y)}$. The Generalized T-Student Kernel $k(x,y) = 1-1/(1+||x-y||^d)$. The normal Kernel $k(x,y) = ||x-y||^2$.
##### Function stringdot[kernlab v0.9-27]
keywords
symbolmath
title
String Kernel Functions
description
String kernels.
##### Function dots[kernlab v0.9-27]
keywords
symbolmath
title
Kernel Functions
description
The kernel generating functions provided in kernlab. The Gaussian RBF kernel $k(x,x') = \exp(-\sigma \|x - x'\|^2)$ The Polynomial kernel $k(x,x') = (scale <x, x'> + offset)^{degree}$ The Linear kernel $k(x,x') = <x, x'>$ The Hyperbolic tangent kernel $k(x, x') = \tanh(scale <x, x'> + offset)$ The Laplacian kernel $k(x,x') = \exp(-\sigma \|x - x'\|)$ The Bessel kernel $k(x,x') = (- Bessel_{(\nu+1)}^n \sigma \|x - x'\|^2)$ The ANOVA RBF kernel $k(x,x') = \sum_{1\leq i_1 \ldots < i_D \leq N} \prod_{d=1}^D k(x_{id}, {x'}_{id})$ where k(x,x) is a Gaussian RBF kernel. The Spline kernel $\prod_{d=1}^D 1 + x_i x_j + x_i x_j min(x_i, x_j) - \frac{x_i + x_j}{2} min(x_i,x_j)^2 + \frac{min(x_i,x_j)^3}{3}$ \ The String kernels (see stringdot.
##### Function Ops.kform[stokes v1.0-5]
keywords
symbolmath
title
Arithmetic Ops Group Methods for kform and ktensor objects
description
Allows arithmetic operators to be used for $k$-forms and $k$-tensors such as addition, multiplication, etc, where defined.
##### Function print[permutations v1.0-6]
keywords
symbolmath
title
Print methods for permutation objects
description
Print methods for permutation objects with matrix-like printing for words and bracket notation for cycle objects.
##### Function perm_matrix[permutations v1.0-6]
keywords
symbolmath
title
Permutation matrices
description
Given a permutation, coerce to word form and return the corresponding permutation matrix
##### Function fixed[permutations v1.0-6]
keywords
symbolmath
title
Fixed elements
description
Finds which elements of a permutation object are fixed