Ben Bolker

Ben Bolker

28 packages on CRAN

lme4

cran
99th

Percentile

Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".

bbmle

cran
95th

Percentile

Methods and functions for fitting maximum likelihood models in R. This package modifies and extends the 'mle' classes in the 'stats4' package.

emdbook

cran
92th

Percentile

Auxiliary functions and data sets for "Ecological Models and Data", a book presenting maximum likelihood estimation and related topics for ecologists (ISBN 978-0-691-12522-0).

88th

Percentile

Convert fitted objects from various R mixed-model packages into tidy data frames along the lines of the 'broom' package. The package provides three S3 generics for each model: tidy(), which summarizes a model's statistical findings such as coefficients of a regression; augment(), which adds columns to the original data such as predictions, residuals and cluster assignments; and glance(), which provides a one-row summary of model-level statistics.

R2admb

cran
87th

Percentile

A series of functions to call 'AD Model Builder' (i.e., compile and run models) from within R, read the results back into R as 'admb' objects, and provide standard accessors (i.e. coef(), vcov(), etc.)

broom

cran
99th

Percentile

Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.

car

cran
99th

Percentile

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, in press.

gtools

cran
99th

Percentile

Functions to assist in R programming, including: - assist in developing, updating, and maintaining R and R packages ('ask', 'checkRVersion', 'getDependencies', 'keywords', 'scat'), - calculate the logit and inverse logit transformations ('logit', 'inv.logit'), - test if a value is missing, empty or contains only NA and NULL values ('invalid'), - manipulate R's .Last function ('addLast'), - define macros ('defmacro'), - detect odd and even integers ('odd', 'even'), - convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy'), - perform a binary search ('binsearch'), - sort strings containing both numeric and character components ('mixedsort'), - create a factor variable from the quantiles of a continuous variable ('quantcut'), - enumerate permutations and combinations ('combinations', 'permutation'), - calculate and convert between fold-change and log-ratio ('foldchange', 'logratio2foldchange', 'foldchange2logratio'), - calculate probabilities and generate random numbers from Dirichlet distributions ('rdirichlet', 'ddirichlet'), - apply a function over adjacent subsets of a vector ('running'), - modify the TCP\_NODELAY ('de-Nagle') flag for socket objects, - efficient 'rbind' of data frames, even if the column names don't match ('smartbind'), - generate significance stars from p-values ('stars.pval'), - convert characters to/from ASCII codes.

gdata

cran
99th

Percentile

Various R programming tools for data manipulation, including: - medical unit conversions ('ConvertMedUnits', 'MedUnits'), - combining objects ('bindData', 'cbindX', 'combine', 'interleave'), - character vector operations ('centerText', 'startsWith', 'trim'), - factor manipulation ('levels', 'reorder.factor', 'mapLevels'), - obtaining information about R objects ('object.size', 'elem', 'env', 'humanReadable', 'is.what', 'll', 'keep', 'ls.funs', 'Args','nPairs', 'nobs'), - manipulating MS-Excel formatted files ('read.xls', 'installXLSXsupport', 'sheetCount', 'xlsFormats'), - generating fixed-width format files ('write.fwf'), - extricating components of date & time objects ('getYear', 'getMonth', 'getDay', 'getHour', 'getMin', 'getSec'), - operations on columns of data frames ('matchcols', 'rename.vars'), - matrix operations ('unmatrix', 'upperTriangle', 'lowerTriangle'), - operations on vectors ('case', 'unknownToNA', 'duplicated2', 'trimSum'), - operations on data frames ('frameApply', 'wideByFactor'), - value of last evaluated expression ('ans'), and - wrapper for 'sample' that ensures consistent behavior for both scalar and vector arguments ('resample').

gplots

cran
98th

Percentile

Various R programming tools for plotting data, including: - calculating and plotting locally smoothed summary function as ('bandplot', 'wapply'), - enhanced versions of standard plots ('barplot2', 'boxplot2', 'heatmap.2', 'smartlegend'), - manipulating colors ('col2hex', 'colorpanel', 'redgreen', 'greenred', 'bluered', 'redblue', 'rich.colors'), - calculating and plotting two-dimensional data summaries ('ci2d', 'hist2d'), - enhanced regression diagnostic plots ('lmplot2', 'residplot'), - formula-enabled interface to 'stats::lowess' function ('lowess'), - displaying textual data in plots ('textplot', 'sinkplot'), - plotting a matrix where each cell contains a dot whose size reflects the relative magnitude of the elements ('balloonplot'), - plotting "Venn" diagrams ('venn'), - displaying Open-Office style plots ('ooplot'), - plotting multiple data on same region, with separate axes ('overplot'), - plotting means and confidence intervals ('plotCI', 'plotmeans'), - spacing points in an x-y plot so they don't overlap ('space').

plotrix

cran
98th

Percentile

Lots of plots, various labeling, axis and color scaling functions.

gmodels

cran
98th

Percentile

Various R programming tools for model fitting.

ape

cran
98th

Percentile

Functions for reading, writing, plotting, and manipulating phylogenetic trees, analyses of comparative data in a phylogenetic framework, ancestral character analyses, analyses of diversification and macroevolution, computing distances from DNA sequences, reading and writing nucleotide sequences as well as importing from BioConductor, and several tools such as Mantel's test, generalized skyline plots, graphical exploration of phylogenetic data (alex, trex, kronoviz), estimation of absolute evolutionary rates and clock-like trees using mean path lengths and penalized likelihood, dating trees with non-contemporaneous sequences, translating DNA into AA sequences, and assessing sequence alignments. Phylogeny estimation can be done with the NJ, BIONJ, ME, MVR, SDM, and triangle methods, and several methods handling incomplete distance matrices (NJ*, BIONJ*, MVR*, and the corresponding triangle method). Some functions call external applications (PhyML, Clustal, T-Coffee, Muscle) whose results are returned into R.

sfsmisc

cran
97th

Percentile

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990's. For graphics, have pretty (Log-scale) axes, an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().

DescTools

cran
97th

Percentile

A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'camel style' was consequently applied to functions borrowed from contributed R packages as well.

foghorn

cran
96th

Percentile

The CRAN check results in your R terminal.

glmmTMB

cran
95th

Percentile

Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.

rstanarm

cran
95th

Percentile

Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.

minpack.lm

cran
94th

Percentile

The nls.lm function provides an R interface to lmder and lmdif from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls-like calls using the nlsLM function.

mlmRev

cran
92th

Percentile

Data and examples from a multilevel modelling software review as well as other well-known data sets from the multilevel modelling literature.

rncl

cran
92th

Percentile

An interface to the Nexus Class Library which allows parsing of NEXUS, Newick and other phylogenetic tree file formats. It provides elements of the file that can be used to build phylogenetic objects such as ape's 'phylo' or phylobase's 'phylo4(d)'. This functionality is demonstrated with 'read_newick_phylo()' and 'read_nexus_phylo()'.

afex

cran
92th

Percentile

Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), automatically aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex_plot() provides a high-level interface for interaction or one-way plots using ggplot2, combining raw data and model estimates. afex uses type 3 sums of squares as default (imitating commercial statistical software).

MEMSS

cran
91th

Percentile

Data sets and sample analyses from Pinheiro and Bates, "Mixed-effects Models in S and S-PLUS" (Springer, 2000).

fortunes

cran
91th

Percentile

A collection of fortunes from the R community.

RLRsim

cran
89th

Percentile

Rapid, simulation-based exact (restricted) likelihood ratio tests for testing the presence of variance components/nonparametric terms for models fit with nlme::lme(),lme4::lmer(), lmeTest::lmer(), gamm4::gamm4(), mgcv::gamm() and SemiPar::spm().

dotwhisker

cran
84th

Percentile

Quick and easy dot-and-whisker plots of regression results.

SASmixed

cran
35th

Percentile

Data sets and sample lmer analyses corresponding to the examples in Littell, Milliken, Stroup and Wolfinger (1996), "SAS System for Mixed Models", SAS Institute.

metaplus

cran
32th

Percentile

Performs meta-analysis and meta-regression using standard and robust methods with confidence intervals based on the profile likelihood. Robust methods are based on alternative distributions for the random effect, either the t-distribution (Lee and Thompson, 2008 <doi:10.1002/sim.2897> or Baker and Jackson, 2008 <doi:10.1007/s10729-007-9041-8>) or mixtures of normals (Beath, 2014 <doi:10.1002/jrsm.1114>).