06.LinearModels: Topic: Linear Models for Microarrays
Description
This page gives an overview of the LIMMA functions available to fit linear models and to interpret the results.
This page covers models for two color arrays in terms of log-ratios or for single-channel arrays in terms of log-intensities.
If you wish to fit models to the individual channel log-intensities from two colour arrays, see 07.SingleChannel.
The core of this package is the fitting of gene-wise linear models to microarray data.
The basic idea is to estimate log-ratios between two or more target RNA samples simultaneously.
See the LIMMA User's Guide for several case studies.Forming the Design Matrix
lmFit
has two main arguments, the expression data and the design matrix.
The design matrix is essentially an indicator matrix which specifies which target RNA samples were applied to each channel on each array.
There is considerable freedom in choosing the design matrix - there is always more than one choice which is correct provided it is interpreted correctly.
Design matrices for Affymetrix or single-color arrays can be created using the function model.matrix
which is part of the R base package.
The function modelMatrix
is provided to assist with creation of an appropriate design matrix for two-color microarray experiments.
For direct two-color designs, without a common reference, the design matrix often needs to be created by hand.Making Comparisons of Interest
Once a linear model has been fit using an appropriate design matrix, the command makeContrasts
may be used to form a contrast matrix to make comparisons of interest.
The fit and the contrast matrix are used by contrasts.fit
to compute fold changes and t-statistics for the contrasts of interest.
This is a way to compute all possible pairwise comparisons between treatments for example in an experiment which compares many treatments to a common reference.Assessing Differential Expression
After fitting a linear model, the standard errors are moderated using a simple empirical Bayes model using eBayes
or treat
.
ebayes
is an older version of eBayes
.
A moderated t-statistic and a log-odds of differential expression is computed for each contrast for each gene.
treat
tests whether log-fold-changes are greater than a threshold rather than merely different to zero.
eBayes
and eBayes
use internal functions squeezeVar
, fitFDist
, tmixture.matrix
and tmixture.vector
.
The function zscoreT
is sometimes used for computing z-score equivalents for t-statistics so as to place t-statistics with different degrees of freedom on the same scale.
zscoreGamma
is used the same way with standard deviations instead of t-statistics.
These functions are for research purposes rather than for routine use.Model Selection
selectModel
provides a means to choose between alternative linear models using AIC or BIC information criteria.References
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments.
Statistical Applications in Genetics and Molecular Biology, 3, No. 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Smyth, G. K., Michaud, J., and Scott, H. (2005). The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9), 2067-2075.See Also
01.Introduction,
02.Classes,
03.ReadingData,
04.Background,
05.Normalization,
06.LinearModels,
07.SingleChannel,
08.Tests,
09.Diagnostics,
10.GeneSetTests,
11.RNAseq