nlme (version 3.1-86)

ACF.gls: Autocorrelation Function for gls Residuals

Description

This method function calculates the empirical autocorrelation function for the residuals from a gls fit. If a grouping variable is specified in form, the autocorrelation values are calculated using pairs of residuals within the same group; otherwise all possible residual pairs are used. The autocorrelation function is useful for investigating serial correlation models for equally spaced data.

Usage

## S3 method for class 'gls':
ACF(object, maxLag, resType, form, na.action, \dots)

Arguments

Value

a data frame with columns lag and ACF representing, respectively, the lag between residuals within a pair and the corresponding empirical autocorrelation. The returned value inherits from class ACF.

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

ACF.gls, plot.ACF

Examples

Run this code
fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
ACF(fm1, form = ~ 1 | Mare)

# Pinheiro and Bates, p. 255-257
fm1Dial.gls <- gls(rate ~
  (pressure+I(pressure^2)+I(pressure^3)+I(pressure^4))*QB,
                   Dialyzer)

fm2Dial.gls <- update(fm1Dial.gls,
                 weights = varPower(form = ~ pressure))

ACF(fm2Dial.gls, form = ~ 1 | Subject)

Run the code above in your browser using DataLab