# NOT RUN {
library(mlr3)
library(paradox)
task = tsk("iris")
learner = lrn("classif.rpart")
resampling = rsmp("holdout")
measure = msr("classif.ce")
search_space = ParamSet$new(
params = list(ParamDbl$new("cp", lower = 0.001, upper = 0.1)))
terminator = trm("evals", n_evals = 5)
tuner = tnr("grid_search")
at = AutoTuner$new(
learner, resampling, measure, search_space, terminator,
tuner)
at$store_tuning_instance = TRUE
at$train(task)
at$model
at$learner
# Nested resampling
at = AutoTuner$new(learner, resampling, measure, search_space, terminator,
tuner)
at$store_tuning_instance = TRUE
resampling_outer = rsmp("cv", folds = 2)
rr = resample(task, at, resampling_outer, store_models = TRUE)
# Aggregate performance of outer results
rr$aggregate()
# Retrieve inner tuning results.
rr$data$learner[[1]]$tuning_result
# }
Run the code above in your browser using DataLab