## Not run:
#
# data(CO2)
# #
# # A quick look at the observations with world map
# quilt.plot( CO2$lon.lat, CO2$y)
# world( add=TRUE)
#
# # Note high concentrations in Borneo (biomass burning), Amazonia and
# # ... Michigan (???).
#
# # spatial smoothing using the wendland compactly supported covariance
# # see help( fastTps) for details
# # First smooth using locations and Euclidean distances
# # note taper is in units of degrees
# out<-fastTps( CO2$lon.lat, CO2$y, theta=4, lambda=2.0)
# #summary of fit note about 7300 degrees of freedom
# # associated with fitted surface
# print( out)
# # image plot on a grid (this takes a while)
# surface( out, type="I", nx=300, ny=150)
# # smooth with respect to great circle distance
# out2<-fastTps( CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, theta=4*68)
# print(out2)
# #surface( out2, type="I", nx=300, ny=150)
#
# # these data are actually subsampled from a grid.
# # create the image object that holds the data
# #
#
# temp<- matrix( NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z))
# temp[ CO2.true$mask] <- CO2$y
#
# # look at gridded object.
# image.plot(CO2.true$x,CO2.true$y, temp)
#
# # to predict _exactly_ on this grid for the second fit;
# # (this take a while)
# look<- predictSurface( out2, grid.list=list( x=CO2.true$x, y=CO2.true$y))
# image.plot(look)
#
# ## End(Not run)
Run the code above in your browser using DataLab