DEGexp(geneExpMatrix1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1",
       geneExpMatrix2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2",
       method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), 
       pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, 
       thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"),
       replicateExpMatrix1=NULL, geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1",
       replicateExpMatrix2=NULL, geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)method="CTR").method="CTR")."LRT":  Likelihood Ratio Test (Marioni et al. 2008),"CTR":  Check whether the variation between Technical Replicates
                                        can be explained by the random sampling model (Wang et al. 2009),"FET":  Fisher's Exact Test (Joshua et al. 2009),"MARS":  MA-plot-based method with Random Sampling model (Wang et al. 2009),"MATR":  MA-plot-based method with Technical Replicates (Wang et al. 2009),"FC":  Fold-Change threshold on MA-plot.LRT, FET, MARS, MATR). 
                
only used when thresholdKind=1.MARS, MATR). 
                
only used when thresholdKind=2.LRT, FET, MARS, MATR).
                
only used when thresholdKind=3 or thresholdKind=4.1:  pValue threshold,2:  zScore threshold,3:  qValue threshold (Benjamini et al. 1995),4:  qValue threshold (Storey et al. 2003),5:  qValue threshold (Storey et al. 2003) and Fold-Change threshold on MA-plot are both required (can be used only whenmethod="MARS").FC)."none", "loess", "median" (Yang et al. 2002). 
                      
recommend: "none".method="MATR").
                    
Note: replicate1 and replicate2 are two (groups of) technical replicates of a sample.method="MATR").method="MATR").method="MATR").method="MATR").method="MATR").
                    
Note: replicate1 and replicate2 are two (groups of) technical replicates of a sample.method="MATR").method="MATR").method="MATR").method="MATR").Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517. Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138. Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp2,
 DEGseq,
 getGeneExp,
 readGeneExp,
 GeneExpExample1000,
 GeneExpExample5000.## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney 
  ## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver
  
  geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq")
  cat("geneExpFile:", geneExpFile, "")
  outputDir <- file.path(tempdir(), "DEGexpExample")
  geneExpMatrix1 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18))
  geneExpMatrix2 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16))
  geneExpMatrix1[30:32,]
  geneExpMatrix2[30:32,]
  DEGexp(geneExpMatrix1=geneExpMatrix1, geneCol1=1, expCol1=c(2,3,4,5,6), groupLabel1="kidney",
         geneExpMatrix2=geneExpMatrix2, geneCol2=1, expCol2=c(2,3,4,5,6), groupLabel2="liver",
         method="LRT", outputDir=outputDir)
  cat("outputDir:", outputDir, "")Run the code above in your browser using DataLab