# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata","lymphocytes.fcs",package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
scale=TRUE)
flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
flowSOM.res <- BuildMST(flowSOM.res)
# Apply metaclustering
metacl <- MetaClustering(flowSOM.res$map$codes,
"metaClustering_consensus",max=10)
# Get the manually gated labels using a gatingML file
# and the flowUtils library
ff <- read.FCS(fileName)
ff_c <- compensate(ff,ff@description$SPILL)
colnames(ff_c)[8:18] <- paste("Comp-",colnames(ff_c)[8:18],sep="")
library(flowUtils)
flowEnv <- new.env()
gatingFile <- system.file("extdata","manualGating.xml",
package="FlowSOM")
read.gatingML(gatingFile, flowEnv)
filterList <- list( "B cells" = flowEnv$ID52300206,
"ab T cells" = flowEnv$ID785879196,
"yd T cells" = flowEnv$ID188379411,
"NK cells" = flowEnv$ID1229333490,
"NKT cells" = flowEnv$ID275096433
)
results <- list()
for(cellType in names(filterList)){
results[[cellType]] <- filter(ff_c,filterList[[cellType]])@subSet
}
manual <- rep("Unknown",nrow(ff))
for(celltype in names(results)){
manual[results[[celltype]]] <- celltype
}
# Test the fmeasure of the result
FMeasure(manual,metacl[flowSOM.res$map$mapping[,1]])
Run the code above in your browser using DataLab