FinalBuildNNET to generate forecasts and ensemble data
FinalBuildNNET(
ModelOutputGrid = NULL,
SavePath = NULL,
TimeSeriesPrepareOutput = NULL,
FCPeriods = 1,
MetricSelection = "MAE",
NumberModelsScore = 1,
ByDataType = FALSE,
DebugMode = FALSE
)
Pass along the grid output from ParallelOptimzeArima()
NULL returns nothing. Supply path to save model object and xregs if they exist
Output from TimeSeriesPrepare()
The number of periods ahead to forecast
The value returned from TimeSeriesPrepare()
The value returned from TimeSeriesPrepare()
Set to TRUE if you want to have models represented from all data sets utilized in training
Set to TRUE to print steps
Time series data sets to pass onto auto modeling functions
Other Time Series Helper:
FinalBuildArfima()
,
FinalBuildArima()
,
FinalBuildETS()
,
FinalBuildTBATS()
,
FinalBuildTSLM()
,
GenerateParameterGrids()
,
OptimizeArfima()
,
OptimizeArima()
,
OptimizeETS()
,
OptimizeNNET()
,
OptimizeTBATS()
,
OptimizeTSLM()
,
ParallelAutoARIMA()
,
ParallelAutoArfima()
,
ParallelAutoETS()
,
ParallelAutoNNET()
,
ParallelAutoTBATS()
,
ParallelAutoTSLM()
,
PredictArima()
,
RL_Performance()
,
Regular_Performance()
,
StackedTimeSeriesEnsembleForecast()
,
TimeSeriesDataPrepare()
,
WideTimeSeriesEnsembleForecast()
# NOT RUN {
FinalBuildNNET(
Output = NULL,
SavePath = NULL,
TimeSeriesPrepareOutput = NULL,
MaxFourierTerms = 0,
TrainValidateShare = c(0.50,0.50),
MaxNumberModels = 5,
MaxRunMinutes = 5,
ByDataType = FALSE,
DebugMode = FALSE)
# }
Run the code above in your browser using DataLab