ParallelAutoARIMA for training multiple models at once
ParallelAutoARIMA(
Output,
MetricSelection = "MAE",
MaxFourierTerms = 1L,
TrainValidateShare = c(0.5, 0.5),
MaxNumberModels = 20,
MaxRunMinutes = 5L,
MaxRunsWithoutNewWinner = 12,
NumCores = max(1L, min(4L, parallel::detectCores()))
)
The output returned from TimeSeriesDataPrepare()
Choose from MAE, MSE, and MAPE
Fourier pairs
c(0.50,0.50)
20
5
12
Default of max(1L, min(4L, parallel::detectCores())). Up to 4 cores can be utilized.
Time series data sets to pass onto auto modeling functions
Other Time Series Helper:
FinalBuildArfima()
,
FinalBuildArima()
,
FinalBuildETS()
,
FinalBuildNNET()
,
FinalBuildTBATS()
,
FinalBuildTSLM()
,
GenerateParameterGrids()
,
OptimizeArfima()
,
OptimizeArima()
,
OptimizeETS()
,
OptimizeNNET()
,
OptimizeTBATS()
,
OptimizeTSLM()
,
ParallelAutoArfima()
,
ParallelAutoETS()
,
ParallelAutoNNET()
,
ParallelAutoTBATS()
,
ParallelAutoTSLM()
,
PredictArima()
,
RL_Performance()
,
Regular_Performance()
,
StackedTimeSeriesEnsembleForecast()
,
TimeSeriesDataPrepare()
,
WideTimeSeriesEnsembleForecast()
# NOT RUN {
ParallelAutoARIMA(
MetricSelection = "MAE",
Output = NULL,
MaxRunsWithoutNewWinner = 20,
TrainValidateShare = c(0.50,0.50),
MaxNumberModels = 5,
MaxRunMinutes = 5,
NumCores = max(1L, min(4L, parallel::detectCores())))
# }
Run the code above in your browser using DataLab