Alpha
Type effects base
## Not run: ------------------------------------
# #### Format data using Y, X, and Prev functions #############################
# ## Input data must be in long format
# y <- Y( # Cases
# data = sim_SA$cases,
# y = "Human",
# type = "Type",
# time = "Time",
# location = "Location"
# )
#
# x <- X( # Sources
# data = sim_SA$sources,
# x = "Count",
# type = "Type",
# time = "Time",
# source = "Source"
# )
#
# k <- Prev( # Prevalences
# data = sim_SA$prev,
# prev = "Value",
# time = "Time",
# source = "Source"
# )
#
# #### Create Dirichlet(1) priors #############################################
#
# ## Create alpha prior data frame
# prior_alpha_long <- expand.grid(
# Source = unique(sim_SA$sources$Source),
# Time = unique(sim_SA$sources$Time),
# Location = unique(sim_SA$cases$Location),
# Alpha = 1
# )
# # Use the Alpha() constructor to specify alpha prior
# prior_alpha <- Alpha(
# data = prior_alpha_long,
# alpha = 'Alpha',
# source = 'Source',
# time = 'Time',
# location = 'Location'
# )
#
# ## Create r prior data frame
# prior_r_long <- expand.grid(
# Type = unique(sim_SA$sources$Type),
# Source = unique(sim_SA$sources$Source),
# Time = unique(sim_SA$sources$Time),
# Value = 0.1
# )
# # Use X() constructor to specify r prior
# prior_r <- X(
# data = prior_r_long,
# x = 'Value',
# type = 'Type',
# time = 'Time',
# source = 'Source'
# )
#
# ## Pack all priors into a list
# priors <- list(
# a_theta = 0.01,
# b_theta = 0.00001,
# a_alpha = prior_alpha,
# a_r = prior_r
# )
#
# ## If all prior values are the same, they can be specified in shorthand
# ## Equivalent result to the longform priors specified above
# priors <- list(
# a_theta = 0.01,
# b_theta = 0.00001,
# a_alpha = 1,
# a_r = 0.1
# )
#
# #### Set initial values (optional) ##########################################
# types <- unique(sim_SA$cases$Type)
# q_long <- data.frame(q=rep(15, length(types)), Type=types)
# init_q <- Q(q_long, q = 'q', type = 'Type')
# inits <- list(q = init_q) # Pack starting values into a list
#
# #### Construct model ########################################################
# my_model <- HaldDP(y = y, x = x, k = k, priors = priors, inits = inits, a_q = 0.1)
#
# #### Set mcmc parameters ####################################################
# my_model$mcmc_params(n_iter = 30, burn_in = 2, thin = 1)
#
# #### Update model ###########################################################
# my_model$update()
# ## Add an additional 10 iterations
# my_model$update(n_iter = 10, append = TRUE)
#
# #### Extract posterior ######################################################
# ## returns the posterior for the r, alpha, q, c,
# ## lambda_i, xi and xi_prop parameters,
# ## for all times, locations, sources and types
# ## the posterior is returned as a list or arrays
# my_model$extract()
#
# ## returns the posterior for the r and alpha parameters,
# ## for time 1, location B, sources Source3, and Source4,
# ## types 5, 25, and 50, and iterations 200:300
# ## the posterior is returned as a list of dataframes
# my_model$extract(params = c("r", "alpha"),
# times = "1", location = "B",
# sources = c("Source3", "Source4"),
# types = c("5", "25", "50"),
# iters = 20:30,
# flatten = TRUE)
#
# #### Calculate medians and credible intervals ###############################
# my_model$summary(alpha = 0.05, CI_type = "percentiles")
# ## subsetting is done in the same way as extract()
# my_model$summary(alpha = 0.05, CI_type = "chen-shao",
# params = c("r", "alpha"),
# times = "1", location = "B",
# sources = c("Source3", "Source4"),
# types = c("5", "25", "50"),
# iters = 20:30,
# flatten = TRUE)
#
# #### Plot heatmap and dendrogram of the type effect grouping ################
# my_model$plot_heatmap()
#
# #### Extract data, initial values, prior values, acceptance
# ## rates for the mcmc algorithm and mcmc parameters
# my_model$get_data()
# my_model$get_inits()
# my_model$get_priors()
# my_model$get_acceptance()
# my_model$get_mcmc_params()
#
## ---------------------------------------------
Run the code above in your browser using DataLab