test.data <- Harman74.cor$cov
ic.out <- ICLUST(test.data)
if(require(Rgraphviz) ) {ICLUST.rgraph(ic.out,title="ICLUST of 24 mental tests") }  
test.data <- Harman74.cor$cov
ic.out <- ICLUST(test.data)         #use all defaults
out.file <- file.choose(new=TRUE)   #create a new file to write the plot commands to 
ICLUST.graph(ic.out,out.file,title = "ICLUST of Harman's 24 mental variables" )   
ic.out <- ICLUST(test.data,nclusters =3)  #use all defaults and if possible stop at 3 clusters
ICLUST.graph(ic.out,out.file,title = "ICLUST of 24 mental variables with forced 3 cluster solution")
ICLUST(test.data, output =3)     #long output shows clustering history
ic.out <- ICLUST(test.data,,nclusters=4, n.iterations =3)  #clean up solution by item reassignment
ICLUST.graph(ic.out,out.file,title = "ICLUST of 24 mental variables with forced 4 cluster solution")
ic.out    #shows the output on the console
#produces this output
#ICLUST(Harman74.cor$cov)
#$title
#[1] "ICLUST"
#
#$clusters
#      VisualPerception                  Cubes         PaperFormBoard                  Flags     GeneralInformation 
#                     1                      1                      1                      1                      1 
# PargraphComprehension     SentenceCompletion     WordClassification            WordMeaning               Addition 
#                     1                      1                      1                      1                      1 
#                  Code           CountingDots StraightCurvedCapitals        WordRecognition      NumberRecognition 
#                     1                      1                      1                      1                      1 
#     FigureRecognition           ObjectNumber           NumberFigure             FigureWord              Deduction 
#                     1                      1                      1                      1                      1 
#      NumericalPuzzles       ProblemReasoning       SeriesCompletion     ArithmeticProblems 
#                     1                      1                      1                      1 
#
#$corrected
#     [,1]
#[1,]    1
#
#$loadings
#                       [,1]
#VisualPerception       0.57
#Cubes                  0.36
#PaperFormBoard         0.40
#Flags                  0.46
#GeneralInformation     0.62
#PargraphComprehension  0.62
#SentenceCompletion     0.60
#WordClassification     0.63
#WordMeaning            0.62
#Addition               0.43
#Code                   0.54
#CountingDots           0.44
#StraightCurvedCapitals 0.57
#WordRecognition        0.41
#NumberRecognition      0.38
#FigureRecognition      0.50
#ObjectNumber           0.45
#NumberFigure           0.51
#FigureWord             0.44
#Deduction              0.59
#NumericalPuzzles       0.58
#ProblemReasoning       0.58
#SeriesCompletion       0.66
#ArithmeticProblems     0.62
#
#$fit
#$fit$clusterfit
#[1] 0.78
#
#$fit$factorfit
#[1] 0.78
#
#
#$results
#    Item/Cluster Item/Cluster similarity correlation alpha1 alpha2 beta1 beta2 size1 size2 rbar1 rbar2   r1   r2 alpha
#C1           V23          V20       1.00        0.51   0.51   0.51  0.51  0.51     1     1  0.51  0.51 0.59 0.59  0.68
#C2            V9           V5       1.00        0.72   0.72   0.72  0.72  0.72     1     1  0.72  0.72 0.78 0.78  0.84
#C3            V7           V6       1.00        0.72   0.72   0.72  0.72  0.72     1     1  0.72  0.72 0.78 0.78  0.84
#C4           V12          V10       1.00        0.58   0.58   0.58  0.58  0.58     1     1  0.58  0.58 0.65 0.65  0.73
#C5           V13          V11       1.00        0.54   0.54   0.54  0.54  0.54     1     1  0.54  0.54 0.62 0.62  0.70
#C6           V18          V17       1.00        0.45   0.45   0.45  0.45  0.45     1     1  0.45  0.45 0.53 0.53  0.62
#C7            V4           V1       0.99        0.47   0.47   0.48  0.47  0.48     1     1  0.47  0.48 0.55 0.55  0.64
#C8           V16          V14       0.98        0.41   0.43   0.41  0.43  0.41     1     1  0.43  0.41 0.50 0.49  0.58
#C9            C2           C3       0.93        0.78   0.84   0.84  0.84  0.84     2     2  0.72  0.72 0.86 0.86  0.90
#C10           C1          V22       0.91        0.56   0.67   0.56  0.68  0.56     2     1  0.51  0.56 0.71 0.63  0.75
#C11          V21          V24       0.87        0.45   0.51   0.53  0.51  0.53     1     1  0.51  0.53 0.56 0.58  0.62
#C12          C10          C11       0.86        0.58   0.74   0.62  0.72  0.62     3     2  0.49  0.45 0.76 0.67  0.79
#C13           C9           V8       0.84        0.64   0.90   0.64  0.88  0.64     4     1  0.69  0.64 0.90 0.68  0.90
#C14           C8          V15       0.84        0.41   0.58   0.41  0.58  0.41     2     1  0.41  0.41 0.61 0.48  0.63
#C15           C5           C4       0.82        0.59   0.70   0.74  0.70  0.73     2     2  0.54  0.58 0.72 0.74  0.80
#C16           V3           V2       0.81        0.32   0.41   0.38  0.41  0.38     1     1  0.41  0.38 0.45 0.43  0.48
#C17          C16           C7       0.81        0.45   0.48   0.64  0.48  0.64     2     2  0.32  0.47 0.55 0.64  0.67
#C18          C12          C17       0.81        0.59   0.79   0.67  0.73  0.62     5     4  0.43  0.34 0.79 0.70  0.83
#C19          V19           C6       0.80        0.40   0.40   0.62  0.40  0.62     1     2  0.40  0.45 0.47 0.64  0.64
#C20          C19          C14       0.77        0.49   0.64   0.64  0.57  0.58     3     3  0.38  0.37 0.66 0.65  0.74
#C21          C18          C20       0.74        0.58   0.83   0.74  0.74  0.66     9     6  0.35  0.32 0.82 0.72  0.86
#C22          C21          C13       0.70        0.62   0.86   0.90  0.73  0.78    15     5  0.29  0.64 0.86 0.78  0.90
#C23          C22          C15       0.65        0.55   0.90   0.79  0.77  0.74    20     4  0.31  0.49 0.90 0.65  0.91
#    beta rbar size
#C1  0.68 0.51    2
#C2  0.84 0.72    2
#C3  0.84 0.72    2
#C4  0.73 0.58    2
#C5  0.70 0.54    2
#C6  0.62 0.45    2
#C7  0.64 0.47    2
#C8  0.58 0.41    2
#C9  0.88 0.69    4
#C10 0.72 0.49    3
#C11 0.62 0.45    2
#C12 0.73 0.43    5
#C13 0.78 0.64    5
#C14 0.58 0.37    3
#C15 0.74 0.49    4
#C16 0.48 0.32    2
#C17 0.62 0.34    4
#C18 0.74 0.35    9
#C19 0.57 0.38    3
#C20 0.66 0.32    6
#C21 0.73 0.29   15
#C22 0.77 0.31   20
#C23 0.71 0.30   24
#
#$cor
#     [,1]
#[1,]    1
#
#$alpha
#[1] 0.91
#
#$size
#[1] 24
#
#$sorted
#$sorted$sorted
#                       item                content cluster loadings
#SeriesCompletion         23       SeriesCompletion       1     0.66
#WordClassification        8     WordClassification       1     0.63
#GeneralInformation        5     GeneralInformation       1     0.62
#PargraphComprehension     6  PargraphComprehension       1     0.62
#WordMeaning               9            WordMeaning       1     0.62
#ArithmeticProblems       24     ArithmeticProblems       1     0.62
#SentenceCompletion        7     SentenceCompletion       1     0.60
#Deduction                20              Deduction       1     0.59
#NumericalPuzzles         21       NumericalPuzzles       1     0.58
#ProblemReasoning         22       ProblemReasoning       1     0.58
#VisualPerception          1       VisualPerception       1     0.57
#StraightCurvedCapitals   13 StraightCurvedCapitals       1     0.57
#Code                     11                   Code       1     0.54
#NumberFigure             18           NumberFigure       1     0.51
#FigureRecognition        16      FigureRecognition       1     0.50
#Flags                     4                  Flags       1     0.46
#ObjectNumber             17           ObjectNumber       1     0.45
#CountingDots             12           CountingDots       1     0.44
#FigureWord               19             FigureWord       1     0.44
#Addition                 10               Addition       1     0.43
#WordRecognition          14        WordRecognition       1     0.41
#PaperFormBoard            3         PaperFormBoard       1     0.40
#NumberRecognition        15      NumberRecognition       1     0.38
#Cubes                     2                  Cubes       1     0.36
#
#
#$p.fit
#$p.fit$clusterfit
#[1] 0.78
#
#$p.fit$factorfit
#[1] 0.78
#
#
#$p.sorted
#$p.sorted$sorted
#                       item                content cluster loadings
#SeriesCompletion         23       SeriesCompletion       1     0.66
#WordClassification        8     WordClassification       1     0.63
#GeneralInformation        5     GeneralInformation       1     0.62
#PargraphComprehension     6  PargraphComprehension       1     0.62
#WordMeaning               9            WordMeaning       1     0.62
#ArithmeticProblems       24     ArithmeticProblems       1     0.62
#SentenceCompletion        7     SentenceCompletion       1     0.60
#Deduction                20              Deduction       1     0.59
#NumericalPuzzles         21       NumericalPuzzles       1     0.58
#ProblemReasoning         22       ProblemReasoning       1     0.58
#VisualPerception          1       VisualPerception       1     0.57
#StraightCurvedCapitals   13 StraightCurvedCapitals       1     0.57
#Code                     11                   Code       1     0.54
#NumberFigure             18           NumberFigure       1     0.51
#FigureRecognition        16      FigureRecognition       1     0.50
#Flags                     4                  Flags       1     0.46
#ObjectNumber             17           ObjectNumber       1     0.45
#CountingDots             12           CountingDots       1     0.44
#FigureWord               19             FigureWord       1     0.44
#Addition                 10               Addition       1     0.43
#WordRecognition          14        WordRecognition       1     0.41
#PaperFormBoard            3         PaperFormBoard       1     0.40
#NumberRecognition        15      NumberRecognition       1     0.38
#Cubes                     2                  Cubes       1     0.36
#
#
#$purified
#$purified$cor
#     [,1]
#[1,]    1
#
#$purified$sd
#[1] 13.79
#
#$purified$corrected
#     [,1]
#[1,] 0.91
#
#$purified$size
#[1] 24
#
#Run the code above in your browser using DataLab