# NOT RUN {
# Importance sampling MNL
pm <- c(0.8, 0.3, 0.2, -0.3, -0.2) # Prior mean (4 parameters).
pc <- diag(length(pm)) # Prior variance
cs <- Profiles(lvls = c(3, 3), coding = c("E", "E"))
ps <- MASS::mvrnorm(n = 10, mu = pm, Sigma = pc) # 10 draws.
# Efficient design.
design <- Modfed(cand.set = cs, n.sets = 8, n.alts = 2, alt.cte = c(1,0), par.draws = ps)$design
# Respons.
resp <- RespondMNL(par = c(0.7, 0.6, 0.5, -0.5, -0.7), des = design, n.alts = 2)
# Parameters draws from posterior.
ImpsampMNL(prior.mean = pm, prior.covar = pc, des = design, n.alts = 2, y = resp, m = 6)
# Importance sampling MNL
pm <- c(0.3, 0.2, -0.3, -0.2) # Prior mean (4 parameters).
pc <- diag(length(pm)) # Prior variance
cs <- Profiles(lvls = c(3, 3, 2), coding = c("D", "C", "D"), c.lvls = list(c(2,4,6)))
ac <- c(0, 0) # No alternative specific constants.
ps <- MASS::mvrnorm(n = 10, mu = pm, Sigma = pc) # 10 draws.
# Efficient design.
design <- Modfed(cand.set = cs, n.sets = 8, n.alts = 2, alt.cte = c(0,0), par.draws = ps)$design
# Respons
resp <- RespondMNL(par = c(0.6, 0.5, -0.5, -0.7), des = design, n.alts = 2)
# Parameters draws from posterior.
ImpsampMNL(prior.mean = pm, prior.covar = pc, des = design, n.alts = 2, y = resp, m = 6)
# }
Run the code above in your browser using DataLab