Learn R Programming

⚠️There's a newer version (1.10.7) of this package.Take me there.

ks (version 1.4.4)

Kernel smoothing

Description

Kernel density estimators and kernel discriminant analysis for multivariate data

Copy Link

Version

Install

install.packages('ks')

Monthly Downloads

34,550

Version

1.4.4

License

GPL (version 2)

Maintainer

Tarn Duong

Last Published

January 16th, 2018

Functions in ks (1.4.4)

Hlscv, Hlscv.diag

Least-squares cross-validation (LSCV) bandwidth matrix selector for multivariate data
Hamise.mixt, Hmise.mixt

MISE- and AMISE-optimal bandwidth matrix selectors for normal mixture densities
Hbcv, Hbcv.diag

Biased cross-validation (BCV) bandwidth matrix selector for bivariate data
amise.mixt, ise.mixt, mise.mixt

ISE, MISE and AMISE of kernel density estimates for normal mixture densities
Hscv

Smoothed cross-validation (SCV) bandwidth matrix selector for bivariate data
Hpi, Hpi.diag

Plug-in bandwidth matrix selector for multivariate data
dmvt.mixt, rmvt.mixt

Multivariate t mixture distribution
compare, compare.kda.diag.cv, compare.kda.cv

Comparisons for kernel discriminant analysis
dnorm.mixt, rnorm.mixt

Univariate normal mixture distribution
kda.kde

Kernel density estimate for kernel discriminant analysis for multivariate data
dmvnorm.mixt, rmvnorm.mixt

Multivariate normal mixture distribution
ks

ks
unicef

Unicef child mortality - life expectancy data
pre.scale, pre.sphere

Pre-sphering and pre-scaling
plot.kde

Kernel density estimate plot for 1- to 3-dimensional data
plot.kda.kde

Kernel discriminant analysis plot for 1- to 3-dimensional data
kde

Kernel density estimate for multivariate data
vec, vech, invvec, invvech

Vector and vector half operators
kda, Hkda, Hkda.diag

Kernel discriminant analysis for multivariate data