Learn R Programming

RVtests (version 1.0)

LASSO: LASSO for Rare Variant Tests

Description

Use LASSO for selecting significant variants and testing the variants associated with disease traits.

Usage

LASSO(x, y, family = c("gaussian", "binomial", "poisson", "multinomial", "cox"), 
	alpha = 1, nlambda = 100, lambda.min.ratio, standardize = TRUE, 
	size.max, a = 2, npermutation = 0, npermutation.max, min.nonsignificant.counts)

Arguments

x
Genotype matrix
y
Phenotype vector
family
Family: gaussian, binomial, poisson, multinomial, and cox
alpha
alpha = 1 for LASSO, see R package glmnet
nlambda
see glmnet
lambda.min.ratio
see glmnet
standardize
see glmnet
size.max
Maximum number of variants included
a
Penalty parameter for information criterion, a=2 for AIC.
npermutation
Number of permutation, if less than 1, the permutation will not be run.
npermutation.max
Maximum permutation, if missing, equal to npermutation.
min.nonsignificant.counts
Minimum nonsignificant counts, if missing, equal to 10.

Value

  • nonsignificant.countsCounts of permuted data that have a higher score than unpermuted data.
  • pvalue.empiricalEmpirical pvalue via permutation
  • pvalue.nominalTheoretical pvalue for the selected variants
  • vsThe selected variants
  • total.permutationTotal permutation
  • familyFamily

Details

Use glmnet package to implement LASSO and an information criterion, AIC, BIC, or GIC, to select the best subset of variants.

References

C. Xu, M. Ladouceur, Z. Dastani, J. B. Richards, A. Ciampi, C. M.T. Greenwood (2012), Multiple regression methods show great potential for rare variant association tests, PLoSONE.

See Also

SPLS, glmnet