LexCA(object, ncp=5, context.sup="ALL", doc.sup=NULL, word.sup=NULL,
segment=FALSE, graph=TRUE, axes=c(1, 2), lmd=3, lmw=3)
In the case of an aggregate CA, DocTerm is an aggregate table and:
Husson F., Le S., Pages J. (2011). Exploratory Multivariate Analysis by Example Using R. Chapman & Hall/CRC.
Lebart, L., Salem, A., & Berry, L. (1998). Exploring textual data. (D. Kluwer, Ed.).
Murtagh F. (2005). Correspondence Analysis and Data Coding with R and Java. Chapman & Hall/CRC.
TextData
, print.LexCA
, plot.LexCA
, summary.LexCA
, ellipseLexCA
data(open.question)
## Not run: ------------------------------------
# ### non-aggregate CA
# res.TD<-TextData(open.question, var.text=c(9,10), Fmin=10, Dmin=10,
# remov.number=TRUE, stop.word.tm=TRUE)
# res.LexCA<-LexCA(res.TD, lmd=0, lmw=1)
## ---------------------------------------------
### aggregate CA
res.TD<-TextData(open.question, var.text=c(9,10), var.agg="Age_Group", Fmin=10, Dmin=10,
remov.number=TRUE, stop.word.tm=TRUE)
res.LexCA<-LexCA(res.TD, lmd=0, lmw=1)
Run the code above in your browser using DataLab