print.marssMLE and look for "states.cis".MARSSparamCIs(MLEobj, method = "hessian", alpha = 0.05, nboot=1000)marssMLE. Must have a $par element containing the MLE parameter estimates.MARSSparamCIs returns the marssMLE object passed in, with additional components par.se, par.upCI, par.lowCI, par.CI.alpha, par.CI.method, par.CI.nboot and par.bias (if method is "parametric" or "innovations").nboot bootstraps. The Hessian CIs are based on the asymptotic normality of MLE parameters under a large-sample approximation. The Hessian computation for variance-covariance matrices is done on these matrices in their equivalent Cholesky decomposition form (see MARSShessian. Bootstrap estimates of parameter bias are reported if method "parametric" or "innovations" is specified.
Note, these are added to the par (etc) elements of a marssMLE object but are in marss form not marxss form. Thus the MLEobj$par.upCI and related elements that are added to the marssMLE object may not look familiar to the user. Instead the user should extract these elements using print(MLEobj) and passing in the argument what set to "par.se","par.bias","par.lowCIs", or "par.upCIs". See print.marssMLE.RShowDoc("UserGuide",package="MARSS") to open a copy.MARSSboot MARSSinnovationsboot MARSShessiandat = t(harborSealWA)
dat = dat[2:4,]
kem = MARSS(dat, model=list(Z=matrix(1,3,1),
R="diagonal and unequal"))
kem.with.CIs.from.hessian = MARSSparamCIs(kem)
kem.with.CIs.from.hessianRun the code above in your browser using DataLab