Learn R Programming

⚠️There's a newer version (3.11.9) of this package.Take me there.

MARSS (version 3.8)

Multivariate Autoregressive State-Space Modeling

Description

The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models fit to multivariate time-series data. Fitting is primarily via an Expectation-Maximization (EM) algorithm, although fitting via the BFGS algorithm (using the optim function) is also provided. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, bootstrap model selection criteria (AICb), confidences intervals via the Hessian approximation and via bootstrapping and calculation of auxiliary residuals for detecting outliers and shocks. The user guide shows examples of using MARSS for parameter estimation for a variety of applications, model selection, dynamic factor analysis, outlier and shock detection, and addition of covariates. Type RShowDoc("UserGuide", package="MARSS") at the R command line to open the MARSS user guide. Online workshops (lectures and computer labs) at http://faculty.washington.edu/eeholmes/workshops.shtml See the NEWS file for update information.

Copy Link

Version

Install

install.packages('MARSS')

Monthly Downloads

750

Version

3.8

License

GPL-2

Maintainer

Elizabeth Holmes NOAA Federal

Last Published

March 18th, 2014

Functions in MARSS (3.8)

MARSSinnovationsboot

Bootstrapped Data using Stoffer and Wall's Algorithm
CSEGtmufigure

Plot Forecast Uncertainty
MARSSboot

Bootstrap MARSS Parameter Estimates
checkMARSSInputs

Check inputs to MARSS call
MARSSkem

Maximum Likelihood Estimation for Multivariate Autoregressive State-Space Models
CSEGriskfigure

Plot Extinction Risk Metrics
stdInnov

Standardized Innovations
MARSSsimulate

Simulate Data from a MARSS Model
MARSS-package

Multivariate Autoregressive State-Space Model Estimation
MARSS.marxss

Multivariate AR-1 State-space Model with Inputs
MARSSkemcheck

Model Checking for MLE objects Passed to MARSSkem
MARSSapplynames

Names for marssMLE Object Components
utility.functions

Matrix Utilities
coef.marssMLE

Coefficient function for MARSS MLE objects
residuals.marssMLE

MARSS Standardized Residuals
MARSSkf

Kalman Filtering and Smoothing for Time-varying MARSS models
MARSShessian

MARSS Parameter Variance-Covariance Matrix from the Hessian Matrix
MARSShatyt

Compute Expected Value of Y,YY, and YX
MARSSvectorizeparam

Vectorize or Replace the par List
checkModelList

Check model List Passed into MARSS Call
predict.marssMLE

Compute the Prediction Intervals, Expected Values, and Standard Errors for States (X) and Observation (Y) from MARSS fits
marssMODEL

Class "marssMODEL"
MARSS

MARSS Model Specification and Estimation
MARSSoptim

Parameter estimation for MARSS models using optim
graywhales

Population Data Sets
MARSSinfo

Information for MARSS Error Messages and Warnings
isleRoyal

Isle Royale Wolf and Moose Data
SalmonSurvCUI

Salmon Survial Indices
marssMLE

Maximum Likelihood MARSS Estimation Object
plankton

Plankton Data Sets
MARSSmcinit

Monte Carlo Initialization
MARSSaic

AIC for MARSS Models
print.marssMODEL

Printing marssMODEL Objects
marss.conversion

Convert Model Objects between Forms
loggerhead

Loggerhead Turtle Tracking Data
MARSSparamCIs

Standard Errors, Confidence Intervals and Bias for MARSS Parameters
is.marssMODEL

Test Model Objects
marssMLE-class

Class "marssMLE"
print.marssMLE

Printing functions for MARSS MLE objects
MARSS.dfa

Multivariate Dynamic Factor Analysis
MARSSinits

Initial Values for MLE
allowed

MARSS Function Defaults and Allowed Methods
harborSeal

Harbor Seal Population Count Data (Log counts)