Moment Generating Function (PGF) of the Negative Binomial distribution with parameters \(r\) (number of successful trials) and \(p\) (probability of success).
MGF_negbinom(
t,
size,
prob = (1/(1 + beta)),
beta = ((1 - prob)/prob),
nb_tries = FALSE
)
t
Number of successful trials.
Probability of success.
Alternative parameterization of the negative binomial distribution where beta = (1 - p) / p.
logical; if FALSE
(default) number of trials
until the r
th success, otherwise, number of failures until
the r
th success.
Function :
MGF_negbinom
gives the moment generating function (MGF).
PGF_negbinom
gives the probability generating function (PGF).
E_negbinom
gives the expected value.
V_negbinom
gives the variance.
Invalid parameter values will return an error detailing which parameter is problematic.
When \(k\) is the number of failures until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{r + k - 1}{k}\right) (p)^{r} (1 - p)^{k}$$ for \(k \in \{0, 1, \dots \}\)
When \(k\) is the number of trials until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{k - 1}{r - 1}\right) (p)^{r} (1 - p)^{k - r}$$ for \(k \in \{r, r + 1, r + 2, \dots \}\)
The alternative parameterization of the negative binomial with parameter \(\beta\), and \(k\) being the number of trials, has density: $$\frac{\Gamma(r + k)}{\Gamma(r) k!} \left(\frac{1}{1 + \beta}\right)^{r}% \left(\frac{\beta}{1 + \beta}\right)^{k - r}$$ for \(k \in \{0, 1, \dots \}\)
Other Negative Binomial Distribution:
E_negbinom()
,
PGF_negbinom()
,
V_negbinom()
# NOT RUN {
MGF_negbinom(t = 1, size = 4, prob = 0.5)
# }
Run the code above in your browser using DataLab