Parameter estimates \(\alpha, \theta, \sigma^2\) are estimated by BM (when \(\alpha = 0\)) or OU model from geiger for the next step analysis with function HyperParam to get the reasonable range of the hyper parameter as well as the ancestral value.
References
Jhwueng, D-C. (2019) Statistical modeling for adaptive trait evolution. Under review.
Jhwueng, D-C., and Vasileios Maroulas. "Adaptive trait evolution in random environment." Journal of Applied Statistics 43.12 (2016): 2310-2324.
Hansen, Thomas F., Jason Pienaar, and Steven Hecht Orzack. "A comparative method for studying adaptation to a randomly evolving environment." Evolution: International Journal of Organic Evolution 62.8 (2008): 1965-1977.
# NOT RUN {# }# NOT RUN {library(ape)
tree<-rcoal(3)
trait<-rnorm(3)
names(trait)<-tree$tip.label
model <- "OU"OUprior(tree=tree,trait=trait,model=model)
# }# NOT RUN {# }