Learn R Programming

PLNmodels (version 1.2.2)

Poisson Lognormal Models

Description

The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 ) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.

Copy Link

Version

Install

install.packages('PLNmodels')

Monthly Downloads

487

Version

1.2.2

License

GPL (>= 3)

Maintainer

Julien Chiquet

Last Published

March 21st, 2025

Functions in PLNmodels (1.2.2)

PLNLDAfit

An R6 Class to represent a PLNfit in a LDA framework
PLNPCAfamily

An R6 Class to represent a collection of PLNPCAfit
PLNLDA

Poisson lognormal model towards Linear Discriminant Analysis
PLNPCAfit

An R6 Class to represent a PLNfit in a PCA framework
PLN

Poisson lognormal model
PLNPCA

Poisson lognormal model towards Principal Component Analysis
Networkfamily

An R6 Class to virtually represent a collection of network fits
PLNPCA_param

Control of PLNPCA fit
PLNLDAfit_diagonal

An R6 Class to represent a PLNfit in a LDA framework with diagonal covariance
PLNLDA_param

Control of a PLNLDA fit
PLNmixturefit

An R6 Class to represent a PLNfit in a mixture framework
PLNfit_fixedcov

An R6 Class to represent a PLNfit in a standard, general framework, with fixed (inverse) residual covariance
PLNmixturefamily

An R6 Class to represent a collection of PLNmixturefit
PLNfit_spherical

An R6 Class to represent a PLNfit in a standard, general framework, with spherical residual covariance
PLNmixture

Poisson lognormal mixture model
PLNfamily

An R6 Class to represent a collection of PLNfit
PLN_param

Control of a PLN fit
PLNmixture_param

Control of a PLNmixture fit
PLNfit

An R6 Class to represent a PLNfit in a standard, general framework
PLNfit_diagonal

An R6 Class to represent a PLNfit in a standard, general framework, with diagonal residual covariance
PLNnetwork_param

Control of PLNnetwork fit
PLNnetwork

Sparse Poisson lognormal model for network inference
ZIPLN_param

Control of a ZIPLN fit
PLNnetworkfamily

An R6 Class to represent a collection of PLNnetworkfits
ZIPLNfit_diagonal

An R6 Class to represent a ZIPLNfit in a standard, general framework, with diagonal residual covariance
PLNmodels-package

PLNmodels: Poisson Lognormal Models
ZIPLNfit

An R6 Class to represent a ZIPLNfit
ZIPLNfit_fixed

An R6 Class to represent a ZIPLNfit in a standard, general framework, with fixed (inverse) residual covariance
PLNnetworkfit

An R6 Class to represent a PLNfit in a sparse inverse covariance framework
ZIPLN

Zero Inflated Poisson lognormal model
ZIPLNnetwork

Zero Inflated Sparse Poisson lognormal model for network inference
ZIPLNnetwork_param

Control of ZIPLNnetwork fit
barents

Barents fish data set
coef.ZIPLNfit

Extract model coefficients
ZIPLNnetworkfamily

An R6 Class to represent a collection of ZIPLNnetwork
ZIPLNfit_sparse

An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
coef.PLNLDAfit

Extracts model coefficients from objects returned by PLNLDA()
ZIPLNfit_spherical

An R6 Class to represent a ZIPLNfit in a standard, general framework, with spherical residual covariance
coef.PLNmixturefit

Extract model coefficients
mollusk

Mollusk data set
fitted.PLNfit

Extracts model fitted values from objects returned by PLN() and its variants
compute_PLN_starting_point

Helper function for PLN initialization.
coefficient_path

Extract the regularization path of a PLNnetwork fit
coef.PLNfit

Extract model coefficients
getModel.PLNPCAfamily

Model extraction from a collection of models
compute_offset

Compute offsets from a count data using one of several normalization schemes
extract_probs

Extract edge selection frequency in bootstrap subsamples
fitted.ZIPLNfit

Extracts model fitted values from objects returned by ZIPLN() and its variants
getBestModel.PLNPCAfamily

Best model extraction from a collection of models
plot.PLNfamily

Display the criteria associated with a collection of PLN fits (a PLNfamily)
plot.PLNmixturefit

Mixture visualization of a PLNmixturefit object
plot.PLNnetworkfit

Extract and plot the network (partial correlation, support or inverse covariance) from a PLNnetworkfit object
plot.PLNmixturefamily

Display the criteria associated with a collection of PLNmixture fits (a PLNmixturefamily)
plot.PLNPCAfamily

Display the criteria associated with a collection of PLNPCA fits (a PLNPCAfamily)
plot.PLNPCAfit

PCA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object
prepare_data

Prepare data for use in PLN models
oaks

Oaks amplicon data set
rPLN

PLN RNG
fitted.PLNmixturefit

Extracts model fitted values from objects returned by PLNmixture() and its variants
%>%

Pipe operator
predict.PLNfit

Predict counts of a new sample
scRNA

Single cell RNA-seq data
sigma.PLNfit

Extract variance-covariance of residuals 'Sigma'
trichoptera

Trichoptera data set
predict_cond

Predict counts conditionally
predict.ZIPLNfit

Predict counts of a new sample
predict.PLNmixturefit

Prediction for a PLNmixturefit object
stability_selection

Compute the stability path by stability selection
standard_error.PLNPCAfit

Component-wise standard errors of B
sigma.PLNmixturefit

Extract variance-covariance of residuals 'Sigma'
plot.ZIPLNfit_sparse

Extract and plot the network (partial correlation, support or inverse covariance) from a ZIPLNfit_sparse object
plot.PLNLDAfit

LDA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object
plot.Networkfamily

Display various outputs (goodness-of-fit criteria, robustness, diagnostic) associated with a collection of network fits (either PLNnetworkfamily or ZIPLNnetworkfamily)
predict.PLNLDAfit

Predict group of new samples
sigma.ZIPLNfit

Extract variance-covariance of residuals 'Sigma'
vcov.PLNfit

Calculate Variance-Covariance Matrix for a fitted PLN() model object