data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=12,keepfolds=TRUE)
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=12,keepfolds=FALSE)
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=6,NK=2,random=FALSE,keepfolds=TRUE)
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=6,NK=2,random=TRUE,keepfolds=TRUE)
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,keepcoeffs=TRUE,keepfolds=TRUE)
PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- PLS_lm_kfoldcv(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),nt=6,K=12,NK=1)
bbb2 <- PLS_lm_kfoldcv(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),nt=6,K=6,NK=1)
kfolds2CVinfos_lm(bbb)
kfolds2CVinfos_lm(bbb2)
PLS_lm(yCornell,XCornell,6,typeVC="standard")$CVinfos
rm(list=c("XCornell","yCornell","bbb","bbb2"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- PLS_lm_kfoldcv(dataY=log(ypine),dataX=Xpine,nt=10,K=12,NK=1)
bbb2 <- PLS_lm_kfoldcv(dataY=log(ypine),dataX=Xpine,nt=10,K=6,NK=1)
kfolds2CVinfos_lm(bbb)
kfolds2CVinfos_lm(bbb2)
PLS_lm(log(ypine),Xpine,10,typeVC="standard")$CVinfos
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- PLS_lm_kfoldcv(dataY=log(ypine),dataX=XpineNAX21,nt=10,K=12,NK=1)
bbbNA2 <- PLS_lm_kfoldcv(dataY=log(ypine),dataX=XpineNAX21,nt=10,K=6,NK=1)
kfolds2CVinfos_lm(bbbNA)
kfolds2CVinfos_lm(bbbNA2)
PLS_lm(log(ypine),XpineNAX21,10,typeVC="standard")$CVinfos
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2"))
Run the code above in your browser using DataLab