Last chance! 50% off unlimited learning
Sale ends in
It extends to the space through a Voronoi tesselation.
RMfixcov(M, x, y=NULL, z=NULL, T=NULL, grid, var, scale, Aniso, proj,
raw, norm)
FALSE
then the data are interpolated. This
approach is always save, but might be slow. If TRUE
then the data may be accessed when covariance
matrices are calculated. No rescaling or anisotropy definition
In particular, it is used in
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## Example 1 showing that the covariance structure is correctly implemented
n <- 10
z <- matrix(runif(n^2), nc=n)
(z <- z %*% t(z))
RFcovmatrix(RMfixcov(z), 1:n)
## Example 2 showing that the covariance structure is interpolated
RFcovmatrix(RMfixcov(z, 1:n), c(2, 2.1, 2.5, 3))
## Example 3 showing the use in a separable space-time model
model <- RMfixcov(z, 1:n, proj="space") * RMexp(s=40, proj="time")
(z <- RFsimulate(model, x = seq(0,12, 0.5), T=1:100))
plot(z)
FinalizeExample()
Run the code above in your browser using DataLab