Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

RandomFields (version 3.0.35)

RMgneitingdiff: Gneiting Covariance Model Used as Tapering Function

Description

RMgneitingdiff is a stationary isotropic covariance model which is only valid up to dimension 3. The corresponding covariance function only depends on the distance $r \ge 0$ between two points and is given by C(h)=C0(h/t)Wν(h/s) where $C_0$ is Gneiting's model RMgneiting and $W_\nu$ is the Whittle modelRMwhittle.

Usage

RMgneitingdiff(nu, taper.scale, scale, var, Aniso, proj)

Arguments

nu
taper.scale
is the paramter $t$ in the above formula
scale
is the paramter $s$ in the above formula
var,Aniso,proj
optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

The model allows to a certain degree the smooth modelling of the differentiability of a covariance function with compact support.

References

  • Gneiting, T. (1999) Correlation functions for atmospherical data analysis.Q. J. Roy. Meteor. SocPart A125, 2449-2464.

See Also

RMbigneiting, RMgneiting, RMgengneiting, RMgauss, RMmodel, RMwhittle, RFsimulate, RFfit.

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
model <- RMgneitingdiff(nu=2, taper.scale=1, scale=0.2)
x <- seq(0, 10, if (interactive()) 0.02 else 1) 
plot(model)
plot(RFsimulate(model, x=x))
FinalizeExample()

Run the code above in your browser using DataLab