Last chance! 50% off unlimited learning
Sale ends in
BiCopSelect
and estimated sequentially (forward selection of trees).RVineStructureSelect(data, familyset=NA, type=0, selectioncrit="AIC",
indeptest=FALSE, level=0.05, trunclevel=NA,
progress=FALSE, weights=NA)
0
or "RVine"
= R-vine (default)
1
or "CVine"
= C-vine
C- and D-vine copula models with pre-specified order can be specified using CDVineCopSelect
of tselectioncrit = "AIC"
(default) or "BIC"
(see BiCopSelect
).u1
and u2
is performed before bivariate copula selection
(default: indeptest = FALSE
; see BiCopIndTest
level = 0.05
).progress = FALSE
).RVineMatrix
object with the selected structure (RVM$Matrix
) and families (RVM$family
)
as well as sequentially estimated parameters stored in RVM$par
and RVM$par2
.RVineTreePlot
, RVineCopSelect
# load data set
data(daxreturns)
# select the R-vine structure, families and parameters
RVM = RVineStructureSelect(daxreturns,c(1:6),progress=TRUE)
# specify a C-vine copula model with only Clayton, Gumbel and Frank copulas
CVM = RVineStructureSelect(daxreturns,c(3,4,5),"CVine")
# determine the order of the nodes in a D-vine using the package TSP
library(TSP)
d = dim(daxreturns)[2]
M = 1 - abs(TauMatrix(daxreturns))
hamilton = insert_dummy(TSP(M),label="cut")
sol = solve_TSP(hamilton,method="repetitive_nn")
order = cut_tour(sol,"cut")
DVM = D2RVine(order,family=rep(0,d*(d-1)/2),par=rep(0,d*(d-1)/2))
RVineCopSelect(daxreturns,c(1:6),DVM$Matrix)
Run the code above in your browser using DataLab