RadialP2D_1(N, t0, Dt, T = 1, X0, Y0, v, K, Sigma, Output = FALSE)
discretization
).X(t)
at time t0
.Y(t)
at time t0
.0 < v < sqrt(X0^2 + Y0 ^2)
K > 0
.Sigma > 0
.Output = TRUE
write a Output
to an Excel (.csv).dW1(t)
and dW2(t)
are brownian motions independent.
If S = 1
(ie M(S=1,Sigma)
) the system SDE is :
$$dX(t) = (-K * X(t)/(X(t)^2 + Y(t)^2) )* dt + Sigma* dW1(t)$$
$$dY(t) = (-K * Y(t)/(X(t)^2 + Y(t)^2) )* dt + Sigma* dW2(t)$$
For more detail consulted References
.snssde2D
, PredCorr2D
, RadialP2D_1PC
, RadialP3D_1
, tho_M1
, fctgeneral
, hist_general
, Kern_meth
.RadialP2D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=1, v=0.3,
K=3, Sigma=0.2, Output = FALSE)
Run the code above in your browser using DataLab