RadialP2D_1(N, t0, Dt, T = 1, X0, Y0, v, K, Sigma, Output = FALSE)discretization).X(t) at time t0.Y(t) at time t0.0 < v < sqrt(X0^2 + Y0 ^2)K > 0.Sigma > 0.Output = TRUE write a Output to an Excel (.csv).dW1(t) and dW2(t) are brownian motions independent.
If S = 1 (ie M(S=1,Sigma)) the system SDE is :
$$dX(t) = (-K * X(t)/(X(t)^2 + Y(t)^2) )* dt + Sigma* dW1(t)$$
$$dY(t) = (-K * Y(t)/(X(t)^2 + Y(t)^2) )* dt + Sigma* dW2(t)$$
For more detail consulted References.snssde2D, PredCorr2D, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.RadialP2D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=1, v=0.3,
K=3, Sigma=0.2, Output = FALSE)Run the code above in your browser using DataLab