powered by
Stop-loss of the Erlang distribution with shape parameter \(n\) and rate parameter \(\beta\).
SL_erlang(d, shape, rate = 1/scale, scale = 1/rate)
cut-off value.
shape parameter \(n\), must be positive integer.
\(\beta\) is the rate parameter, must be positive.
alternative parameterization to rate parameter, scale = 1 / rate.
Function :
MGF_erlang gives the moment generating function (MGF).
MGF_erlang
derlang gives the density function.
derlang
perlang gives the cumulative density function.
perlang
E_erlang gives the expected value.
E_erlang
V_erlang gives the variance.
V_erlang
kthmoment_erlang gives the kth moment.
kthmoment_erlang
Etronq_erlang gives the truncated mean.
Etronq_erlang
SL_erlang gives the stop-loss.
SL_erlang
Elim_erlang gives the limited mean.
Elim_erlang
Mexcess_erlang gives the mean excess loss.
Mexcess_erlang
TVaR_erlang gives the Tail Value-at-Risk.
TVaR_erlang
VaR_erlang gives the Value-at-Risk.
VaR_erlang
Invalid parameter values will return an error detailing which parameter is problematic.
The Erlang distribution with shape parameter \(n\) and rate parameter \(\beta\) has density: $$f\left(x\right) = \frac{\beta^{n}}{\Gamma(n)} x^{n - 1}% \mathrm{e}^{-\beta x}$$ for \(x \in \mathcal{R}^+\), \(\beta > 0\), \(n \in \mathcal{N}^+\)
Other Erlang Distribution: E_erlang(), Elim_erlang(), Etronq_erlang(), MGF_erlang(), Mexcess_erlang(), TVaR_erlang(), V_erlang(), VaR_erlang(), derlang(), kthmoment_erlang(), perlang()
E_erlang()
Elim_erlang()
Etronq_erlang()
MGF_erlang()
Mexcess_erlang()
TVaR_erlang()
V_erlang()
VaR_erlang()
derlang()
kthmoment_erlang()
perlang()
# NOT RUN { # With scale parameter SL_erlang(d = 2, shape = 2, scale = 5) # With rate parameter SL_erlang(d = 2, shape = 2, rate = 0.2) # }
Run the code above in your browser using DataLab