# NOT RUN {
## These are long running examples that use parallel computing!
## The below examples take around 40 seconds to run.
# Load the data
data(eurusd, package="gmvarkit")
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
colnames(data) <- colnames(eurusd)
# Structural GMVAR(2, 2), d=2 model identified similarly to Cholesky:
W22 <- matrix(c(1, NA, 0, 1), nrow=2, byrow=FALSE)
fit22s <- fitGMVAR(data, p=2, M=2, structural_pars=list(W=W22),
ncalls=1, seeds=4)
fit22s
# Test whether the lambda parameters (of the second regime) are identical:
# fit22s has parameter vector of length 26 with the lambda parameters
# in elements 24 and 25.
A <- matrix(c(rep(0, times=23), 1, -1, 0), nrow=1, ncol=26)
c <- 0
Wald_test(fit22s, A=A, c=c)
# Test whether the off-diagonal elements of the first regime's first
# AR coefficient matrix (A_11) are both zero:
# fit22s has parameter vector of length 26 and the off-diagonal elements
# of the 1st regime's 1st AR coefficient matrix are in the elements 6 and 7.
A <- rbind(c(rep(0, times=5), 1, rep(0, times=20)),
c(rep(0, times=6), 1, rep(0, times=19)))
c <- c(0, 0)
Wald_test(fit22s, A=A, c=c)
# }
Run the code above in your browser using DataLab