# NOT RUN {
# These examples use the data 'eurusd' which comes with the
# package, but in a scaled form.
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
colnames(data) <- colnames(eurusd)
# GMVAR(1,2), d=2 model:
params122 <- c(0.623, -0.129, 0.959, 0.089, -0.006, 1.006, 1.746,
0.804, 5.804, 3.245, 7.913, 0.952, -0.037, -0.019, 0.943, 6.926,
3.982, 12.135, 0.789)
mod122 <- GMVAR(data, p=1, M=2, params=params122)
diagnostic_plot(mod122, type="series")
diagnostic_plot(mod122, type="ac")
# GMVAR(2,2), d=2 model:
params222 <- c(1.386, -0.765, 1.314, 0.145, 0.094, 1.292, -0.389,
-0.070, -0.109, -0.281, 0.920, -0.025, 4.839, 1.005, 5.928, 1.248,
0.077, -0.040, 1.266, -0.272, -0.074, 0.034, -0.313, 5.855, 3.570,
9.838, 0.740)
mod222 <- GMVAR(data, p=2, M=2, params=params222)
diagnostic_plot(mod222, type="ch")
diagnostic_plot(mod222, type="norm")
# GMVAR(2,2), d=2 model with AR-parameters restricted to be
# the same for both regimes:
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
params222c <- c(1.031, 2.356, 1.786, 3.000, 1.250, 0.060, 0.036,
1.335, -0.290, -0.083, -0.047, -0.356, 0.934, -0.152, 5.201, 5.883,
3.560, 9.799, 0.368)
mod222c <- GMVAR(data, p=2, M=2, params=params222c, constraints=C_mat)
diagnostic_plot(mod222c, wait_time=0.1)
diagnostic_plot(mod222c, type="ac", maxlag=12)
# }
Run the code above in your browser using DataLab