# NO INTERACTION CONDITION, LOGISTIC MODEL
null.interaction <- data.anoint(
alpha = c(log(.5),log(.5*.75)),
beta = log(c(1.5,2)),
gamma = rep(1,2),
mean = c(0,0),
vcov = diag(2),
type="survival", n = 500
)
head(null.interaction)
object <- anoint(Surv(y, event)~(V1+V2)*trt,data=null.interaction,family="coxph")
object
summary(object)
# NO INTERACTION CONDITION, WITH PROGNOSTIC SELECTION
null.interaction <- data.anoint(
alpha = c(log(.2/.8),log(.2*.75/(1-.2*.75))),
beta = c(1.5,2,0,0),
gamma = rep(1,4),
mean = rep(0,4),
vcov = diag(4),
type="binomial", n = 500
)
head(null.interaction)
object <- anoint(y~(V1+V2+V3+V4)*trt,data=null.interaction,select="glmnet")
summary(object)
# FORCE V1, V2 INTO THE MODEL; INTERCEPT IS ALWAYS THE FIRST TERM OF MODEL
object <- anoint(y~(V1+V2+V3+V4)*trt,data=null.interaction,
select="glmnet",keep.vars=c("V1","V2"))
summary(object)
# SELECTION WITH STEPWISE SELECTION AND AIC CRITERION
object <- anoint(y~(V1+V2+V3+V4)*trt,data=null.interaction,
select="stepAIC")
summary(object)
Run the code above in your browser using DataLab