data(learning.test)
res = gs(learning.test)
res = set.arc(res, "A", "B")
arc.strength(res, learning.test)
#   from to      strength
# 1    A  B  0.000000e+00
# 2    A  D  0.000000e+00
# 3    B  E 1.024198e-320
# 4    C  D  0.000000e+00
# 5    F  E 3.935648e-245
arcs = boot.strength(learning.test, algorithm = "hc")
arcs[(arcs$strength > 0.85) & (arcs$direction >= 0.5), ]
#    from to strength direction
# 1     A  B        1       0.5
# 3     A  D        1       1.0
# 6     B  A        1       0.5
# 9     B  E        1       1.0
# 13    C  D        1       1.0
# 30    F  E        1       1.0
averaged.network(arcs)
#
#   Random/Generated Bayesian network
#
#   model:
#    [A][C][F][B|A][D|A:C][E|B:F]
#   nodes:                                 6
#   arcs:                                  5
#     undirected arcs:                     0
#     directed arcs:                       5
#   average markov blanket size:           2.33
#   average neighbourhood size:            1.67
#   average branching factor:              0.83
#
#   generation algorithm:                  Model Averaging
#   significance threshold:                0.025
start = random.graph(nodes = names(learning.test), num = 50)
netlist = lapply(start, function(net) {
  hc(learning.test, score = "bde", iss = 10, start = net) })
arcs = custom.strength(netlist, nodes = names(learning.test),
         cpdag = FALSE)
arcs[(arcs$strength > 0.85) & (arcs$direction >= 0.5), ]
#    from to strength direction
# 1     A  B        1      1.00
# 3     A  D        1      1.00
# 9     B  E        1      0.98
# 13    C  D        1      0.96
# 30    F  E        1      0.66
modelstring(averaged.network(arcs))
# [1] "[A][C][F][B|A][D|A:C][E|B:F]"Run the code above in your browser using DataLab