# NOT RUN {
data(Oats.dat)
## Use asreml to get predictions and associated statistics
# }
# NOT RUN {
m1.asr <- asreml(Yield ~ Nitrogen*Variety,
random=~Blocks/Wplots,
data=Oats.dat)
current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",
sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")
Var.pred <- Var.pred$predictions
Var.preds <- Var.pred$pvals
Var.sed <- Var.pred$sed
Var.vcov <- NULL
# }
# NOT RUN {
## Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
## Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
Var.vcov <- vcov(Var.emm)
Var.sed <- NULL
}
## Use the predictions obtained with either asreml or lmerTest
if (exists("Var.preds"))
{
## Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",
sed = Var.sed, vcov = Var.vcov, tdf = den.df)
## Check the class and validity of the alldiffs object
is.alldiffs(Var.diffs)
validAlldiffs(Var.diffs)
}
# }
Run the code above in your browser using DataLab