# NOT RUN {
set.seed(1)
library(MASS)
library(glmnet)
library(glasso)
## Generate the covariance matrix for the AR(1) process
rho <- 0.5
p <- 100
n <- 100
Sigma <- diag(rep(1,p))
Sigma <- rho^(abs(row(Sigma)-col(Sigma)))/(1-rho^2)
## The inverse covariance matrix is sparse
Omega <- solve(Sigma)
## Generate multivariate normal data n by p
X <- mvrnorm(n, mu=rep(0, p), Sigma=Omega)
## Select the tuning parameters
score = bic.netEst.undir(X, lambda = seq(0.1,1,0.1))
# }
Run the code above in your browser using DataLab