Performs bootstrapping to get group standard error estimates of a global graph measure (e.g. modularity).
Print a summary from a bootstrap analysis
brainGraph_boot(densities, resids, R = 1000, measure = c("mod", "E.global",
"Cp", "Lp", "assortativity", "strength", "mod.wt", "E.global.wt"),
conf = 0.95, .progress = TRUE)# S3 method for brainGraph_boot
summary(object, ...)
Numeric vector of graph densities to loop through
An object of class brainGraph_resids
(the output from
get.resid
)
Integer; the number of bootstrap replicates (default: 1e3
)
Character string of the measure to test (default: mod
)
Numeric; the confidence level for calculating confidence intervals (default: 0.95)
Logical indicating whether or not to show a progress bar
(default: TRUE
)
A brainGraph_boot
object (from
brainGraph_boot
)
Unused
An object of class brainGraph_boot
containing some input
variables, in addition to a list of boot
objects (one
for each group).
The confidence intervals are calculated using the normal approximation and at the 95% level.
Other Group analysis functions: IndividualContributions
,
NBS
, brainGraph_GLM
,
brainGraph_mediate
,
brainGraph_permute
, mtpc
Other Structural covariance network functions: IndividualContributions
,
brainGraph_init
,
brainGraph_permute
,
corr.matrix
, get.resid
,
plot.brainGraph_resids
,
plot_volumetric
# NOT RUN {
boot.E.global <- brainGraph_boot(densities, resids.all, 1e3, 'E.global')
# }
Run the code above in your browser using DataLab