calc_CentralDose(data, sigmab, plot = TRUE, ...)
RLum.Results
or data.frame (required):
for data.frame
: two columns with De (data[,1])
and
De error (values[,2])
numeric
(with default): spread in De values given as
a fraction (e.g. 0.2). This value represents the expected overdispersion
in the data should the sample be well-bleached (Cunningham & Walling 2012,
plogical
(with default): plot outputtrace, verbose
).RLum.Results
object is
returned containing the following element:get_RLum.Results
sigma
is estimated using the maximum likelihood
approach. A detailed explanation on maximum likelihood estimation can be
found in the appendix of Galbraith & Laslett (1993, 468-470)plot
, calc_CommonDose
,
calc_FiniteMixture
, calc_FuchsLang2001
,
calc_MinDose
##load example data
data(ExampleData.DeValues, envir = environment())
##apply the central dose model
calc_CentralDose(ExampleData.DeValues)
Run the code above in your browser using DataLab